289 research outputs found

    Dielectric metasurfaces for light management in photovoltaics

    Get PDF
    In this thesis we develop dielectric nanostructures to create tailored colorful appearance of solar cells and show how similar structures can increase the efficiency in tandem cells. For this, we design layers composed of dielectric nanoparticles that show strong light scattering in the visible spectral range. In particular, we develop dielectric metasurfaces and combined (gradient) metagratings that enable the control of spectrum and directivity of scattered light. In the first part of the thesis, we present novel ways to realize coloration of PV (Chapter 2-5), and design metasurfaces with tailored spectral and angular control of light (Chapter 4, 6). In the second part of the thesis, we theoretically and experimentally develop metasurface spectral splitters to improve the performance of two-terminal and four-terminal perovskite/silicon tandem solar cells (Chapter 7, 8). Overall, this thesis provides novel solutions based on nanophotonic light scattering to create colored PV and tandem solar cells with enhanced efficiency. It employs control over the scattering properties of resonant dielectric nanoscatterers and metasurfaces to create desired scattering distributions that are tailored in angular and spectral range. The metagrating concepts for photovoltaics developed in this thesis can be applied on a wide range of solar cells and can be scaled up to practical large-area fabrication technologies

    Entanglement, Dephasing, and Phase Recovery via Cross-Correlation Measurements of Electrons

    Full text link
    Determination of the path taken by a quantum particle leads to a suppression of interference and to a classical behavior. We employ here a quantum 'which path' detector to perform accurate path determination in a two-path-electron-interferometer; leading to full suppression of the interference. Following the dephasing process we recover the interference by measuring the cross-correlation between the interferometer and detector currents. Under our measurement conditions every interfering electron is dephased by approximately a single electron in the detector - leading to mutual entanglement of approximately single pairs of electrons.Comment: 13 Pages, 5 Figure

    Fractionalization noise in edge channels of integer quantum Hall states

    Full text link
    A theoretical calculation is presented of current noise which is due charge fractionalization, in two interacting edge channels in the integer quantum Hall state at filling factor ν=2\nu=2. Because of the capacitive coupling between the channels, a tunneling event, in which an electron is transferred from a biased source lead to one of the two channels, generates propagating plasma mode excitations which carry fractional charges on the other edge channel. When these excitations impinge on a quantum point contact, they induce low-frequency current fluctuations with no net average current. A perturbative treatment in the weak tunneling regime yields analytical integral expressions for the noise as a function of the bias on the source. Asymptotic expressions of the noise in the limits of high and low bias are found

    The Role of Interactions in an Electronic Fabry-Perot Interferometer Operating in the Quantum Hall Effect Regime

    Full text link
    Interference of edge channels is expected to be a prominent tool for studying statistics of charged quasiparticles in the quantum Hall effect (QHE) [A. Stern (2008), Ann. Phys. 1:204; C. Chamon et al. (1997), Phys. Rev. B, 55:2331]. We present here a detailed study of an electronic Fabry-Perot interferometer (FPI) operating in the QHE regime [C. Chamon et al. (1997), Phys. Rev. B, 55:2331], with the phase of the interfering quasiparticles controlled by the Aharonov-Bohm (AB) effect. Our main finding is that Coulomb interactions among the electrons dominate the interference, even in a relatively large area FPI, leading to a strong dependence of the area enclosed by the interference loop on the magnetic field. In particular, for a composite edge structure, with a few independent edge channels propagating along the edge, interference of the outmost edge channel (belonging to the lowest Landau level) was insensitive to magnetic field; suggesting a constant enclosed flux. However, when any of the inner edge channels interfered, the enclosed flux decreased when the magnetic field increased. By intentionally varying the enclosed area with a biased metallic gate and observing the periodicity of the interference pattern, charges e (for integer filling factors) and e/3 (for a fractional filling factor) were found to be expelled from the FPI. Moreover, these observations provided also a novel way of detecting the charge of the interfering quasiparticles.Comment: 8 pages, 8 figure

    Brote de mastitis clĂ­nica por Corynebacterium spp. y Streptococcus dysgalactiae en cabras en Salta, Argentina

    Get PDF
    Intramammary infections are a serious problem for goat’s milk production worldwide. Staphylococcus spp. are the most prevalent pathogens responsible for intramammary infection in small ruminants; however, there is only little information about goat mastitis in Argentina. The objective of this communication was to describe an outbreak of clinical mastitis affecting 12 of 24 lactating goats. Corynebacterium spp. and Streptococcus dysgalactiae were isolated in pure culture from all milk samples. All the clinical isolates were identified by biochemical tests and subjected to antibiotic susceptibility tests

    Current-voltage correlations in interferometers

    Full text link
    We investigate correlations of current at contacts and voltage fluctuations at voltage probes coupled to interferometers. The results are compared with correlations of current and occupation number fluctuations at dephasing probes. We use a quantum Langevin approach for the average quantities and their fluctuations. For higher order correlations we develop a stochastic path integral approach and find the generating functions of voltage or occupation number fluctuations. We also derive a generating function for the joint distribution of voltage or occupation number at the probe and current fluctuations at a terminal of a conductor. For energy independent scattering we found earlier that the generating function of current cumulants in interferometers with a one-channel dephasing or voltage probe are identical. Nevertheless, the distribution function for voltage and the distribution function for occupation number fluctuations differ, the latter being broader than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added reference

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure
    • …
    corecore