24 research outputs found

    Comparative study of CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts in the CO-PROX reaction

    Get PDF
    CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts (6%wt Cu) were synthesized and tested in the preferential oxidation of CO in a H2-rich stream (CO-PROX). Nanocrystalline supports, CeO2 and solid solutions of modified CeO2 with zirconium and aluminum were prepared by a freeze-drying method. CuO was supported by incipient wetness impregnation and calcination at 400 C. All catalysts exhibit high activity in the CO-PROX reaction and selectivity to CO2 at low reaction temperature, being the catalyst supported on CeO2 the more active and stable. The influence of the presence of CO2 and H2O was also studied

    Different Profiles of Spatial Navigation Deficits In Alzheimer's Disease Biomarker-Positive Versus Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment.

    Get PDF
    Background: Spatial navigation impairment is a promising cognitive marker of Alzheimer's disease (AD) that can reflect the underlying pathology. Objectives: We assessed spatial navigation performance in AD biomarker positive older adults with amnestic mild cognitive impairment (AD aMCI) vs. those AD biomarker negative (non-AD aMCI), and examined associations between navigation performance, MRI measures of brain atrophy, and cerebrospinal fluid (CSF) biomarkers. Methods: A total of 122 participants with AD aMCI (n = 33), non-AD aMCI (n = 31), mild AD dementia (n = 28), and 30 cognitively normal older adults (CN) underwent cognitive assessment, brain MRI (n = 100 had high-quality images for volumetric analysis) and three virtual navigation tasks focused on route learning (body-centered navigation), wayfinding (world-centered navigation) and perspective taking/wayfinding. Cognitively impaired participants underwent CSF biomarker assessment [amyloid-β1-42, total tau, and phosphorylated tau181 (p-tau181)] and amyloid PET imaging (n = 47 and n = 45, respectively), with a subset having both (n = 19). Results: In route learning, AD aMCI performed worse than non-AD aMCI (p < 0.001), who performed similarly to CN. In wayfinding, aMCI participants performed worse than CN (both p ≤ 0.009) and AD aMCI performed worse than non-AD aMCI in the second task session (p = 0.032). In perspective taking/wayfinding, aMCI participants performed worse than CN (both p ≤ 0.001). AD aMCI and non-AD aMCI did not differ in conventional cognitive tests. Route learning was associated with parietal thickness and amyloid-β1-42, wayfinding was associated with posterior medial temporal lobe (MTL) volume and p-tau181 and perspective taking/wayfinding was correlated with MRI measures of several brain regions and all CSF biomarkers. Conclusion: AD biomarker positive and negative older adults with aMCI had different profiles of spatial navigation deficits that were associated with posterior MTL and parietal atrophy and reflected AD pathology

    Cognitive and Motor Decline in Dementia with Lewy Bodies and Parkinson's Disease Dementia

    Get PDF
    Funding Information: The University of Stavanger supported M.C.G. The CamPaIGN study has received funding from the Wellcome Trust, the Medical Research Council, the Patrick Berthoud Trust, and the NIHR Cambridge Biomedical Research Centre (BRC‐1215‐20014). The ICICLE‐PD study was funded by Parkinson's UK (J‐0802, G‐1301, G‐1507) and supported by the Lockhart Parkinson's Disease Research Fund, National Institute for Health Research (NIHR) Newcastle Biomedical Research Unit and Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The PICNICS study was funded by the Cure Parkinson's Trust, the Van Geest Foundation, the Medical Research Council, Parkinson's UK, and the NIHR Cambridge Biomedical Research Centre (BRC‐1215‐20014). The NYPUM study was supported by grants from the Swedish Medical Research Council, Erling‐Persson Foundation, the Swedish Brain Foundation (Hjärnfonden), Umeå University, Västerbotten County Council, King Gustaf V and Queen Victoria Freemason Foundation, Swedish Parkinson Foundation, Swedish Parkinson Research Foundation, Kempe Foundation, Swedish PD Association, the European Research Council, and the Knut and Alice Wallenberg Foundation. The PINE study was funded by Parkinson's UK (grant numbers G0502, G0914, and G1302), the Scottish Chief Scientist Office (CAF/12/05, PCL/17/10), Academy of Medical Sciences, NHS Grampian endowments, the BMA Doris Hillier award, RS Macdonald Trust, the BUPA Foundation, and SPRING. The PARKWEST study was supported by the Research Council of Norway (grant# 177966), the Western Norway Regional Health Authority (grant# 911218 and # 911949), Reberg legacy and the Norwegian Parkinson's Research Foundation. The PICC collaboration has been supported by The Chief Scientist Office of the Scottish Government (PCL/17/10), the Academy of Medical Sciences, Parkinson's UK (initial collaborator meeting) and the Norwegian Association for Public Health. The DEMVEST Study was supported by the regional health authorities of Western Norway, Helse‐Vest (grant# 911973). Motol University Hospital's Czech Brain Aging Study was supported by the National Institute for Neurological Research (Programme EXCELES, ID Project No. LX22NPO5107)—Funded by the European Union—Next Generation EU and by Charles University grant PRIMUS 22/MED/011. The Sant Pau Initiative on Neurodegeration (SPIN) cohort was supported by the Fondo de Investigaciones Sanitario (FIS), Instituto de Salud Carlos III (PI14/01126, PI17/01019 and PI20/01473 to JF, PI13/01532 and PI16/01825 to RB, PI18/00335 to MCI, PI18/00435 and INT19/00016 to DA, PI17/01896 and AC19/00103to AL) and the CIBERNED program (Program 1, Alzheimer Disease to AL), jointly funded by Fondo Europeo de Desarrollo Regional, Unión Europea, “Una manera de hacer Europa”. It was also supported by the National Institutes of Health (NIA grants 1R01AG056850‐01A1; R21AG056974; and R01AG061566), by Generalitat de Catalunya (2017‐SGR‐547, SLT006/17/125, SLT006/17/119, SLT002/16/408) and “Marató TV3” foundation grants 20141210, 044412 and 20142610. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The sponsors were not involved in the study design, in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the article for publication. The authors declare that there are no conflicts of interest relevant to this work. Funding Sources and Conflicts of Interest:Peer reviewedPublisher PD

    Sex differences in brain atrophy in dementia with Lewy bodies

    Get PDF
    Publisher Copyright: © 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.INTRODUCTION: Sex influences neurodegeneration, but it has been poorly investigated in dementia with Lewy bodies (DLB). We investigated sex differences in brain atrophy in DLB using magnetic resonance imaging (MRI). METHODS: We included 436 patients from the European-DLB consortium and the Mayo Clinic. Sex differences and sex-by-age interactions were assessed through visual atrophy rating scales (n = 327; 73 ± 8 years, 62% males) and automated estimations of regional gray matter volume and cortical thickness (n = 165; 69 ± 9 years, 72% males). RESULTS: We found a higher likelihood of frontal atrophy and smaller volumes in six cortical regions in males and thinner olfactory cortices in females. There were significant sex-by-age interactions in volume (six regions) and cortical thickness (seven regions) across the entire cortex. DISCUSSION: We demonstrate that males have more widespread cortical atrophy at younger ages, but differences tend to disappear with increasing age, with males and females converging around the age of 75. Highlights: Male DLB patients had higher odds for frontal atrophy on radiological visual rating scales. Male DLB patients displayed a widespread pattern of cortical gray matter alterations on automated methods. Sex differences in gray matter measures in DLB tended to disappear with increasing age.Peer reviewe

    Mild cognitive impairment: A subset of minor neurocognitive disorder?

    No full text
    The field of aging and dementia is increasingly preoccupied with identification of the asymptomatic phenotype of Alzheimer disease (AD). A quick glance at historical landmarks in the field indicates that the agenda and priorities of the field have evolved over time. The initial focus of research was dementia. In the late 1980s and 1990s, dementia researchers reported that some elderly persons are neither demented nor cognitively normal. Experts coined various terms to describe the gray zone between normal cognitive aging and dementia, including mild cognitive impairment. Advances made in epidemiologic, neuroimaging, and biomarkers research emboldened the field to seriously pursue the avenue of identifying asymptomatic AD. Accurate diagnosis of the phenotype has also evolved over time. For example, the American Psychiatric Association\u27s Diagnostic and Statistical Manual of Mental Disorders (DSM-5) Task Force is contemplating to use the terms major and minor neurocognitive disorders. The six papers published in this edition of the journal pertain to mild cognitive impairment, which is envisaged to become a subset of minor neurocognitive disorders. These six studies have three points in common: 1) All of them are observational studies; 2) they have generated useful hypotheses or made important observations without necessarily relying on expensive biomarkers; and 3) Based on the new National Institute on Aging and the Alzheimer\u27s Association guidelines, all the studies addressed the symptomatic phase of AD. Questionnaire-based observational studies will continue to be useful until such a time that validated biomarkers, be it chemical or neuroimaging, become widely available and reasonably affordable. © 2012 American Association for Geriatric Psychiatry

    Subregional Structural Alterations in Hippocampus and Nucleus Accumbens Correlate with the Clinical Impairment in Patients with Alzheimer’s Disease Clinical Spectrum: Parallel Combining Volume and Vertex-Based Approach

    No full text
    Deep gray matter structures are associated with memory and other important functions that are impaired in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). However, systematic characterization of the subregional atrophy and deformations in these structures in AD and MCI still need more investigations. In this article, we combined complex volumetry- and vertex-based analysis to investigate the pattern of subregional structural alterations in deep gray matter structures and its association with global clinical scores in AD (n = 30) and MCI patients (n = 30), compared to normal controls (NCs, n = 30). Among all seven pairs of structures, the bilateral hippocampi and nucleus accumbens showed significant atrophy in AD compared with NCs (p &lt; 0.05). But only the subregional atrophy in the dorsal–medial part of the left hippocampus, the ventral part of right hippocampus, and the left nucleus accumbens, the posterior part of the right nucleus accumbens correlated with the worse clinical scores of MMSE and MOCA (p &lt; 0.05). Furthermore, the medial–ventral part of right thalamus significantly shrank and correlated with clinical scores without decreasing in its whole volume (p &gt; 0.05). In conclusion, the atrophy of these four subregions in bilateral hippocampi and nucleus accumbens was associated with cognitive impairment of patients, which might be potential target regions of treatment in AD. The surface analysis could provide additional information to volume comparison in finding the early pathological progress in deep gray matter structures

    Spatial navigation—a unique window into physiological and pathological aging

    Get PDF
    Spatial navigation is a skill of determining and maintaining a trajectory from one place to another. Mild progressive decline of spatial navigation develops gradually during the course of physiological ageing. Nevertheless, severe spatial navigation deficit can be the first sign of incipient Alzheimer's disease (AD), occurring in the stage of mild cognitive impairment (MCI), preceding the development of a full blown dementia. Patients with amnestic MCI, especially those with the hippocampal type of amnestic syndrome, are at very high risk of AD. These patients present with the same pattern of spatial navigation impairment as do the patients with mild AD. Spatial navigation testing of elderly as well as computer tests developed for routine clinical use thus represents a possibility for further investigation of this cognitive domain, but most of all, an opportunity for making early diagnosis of AD
    corecore