54 research outputs found

    The mERG1a channel modulates skeletal muscle MuRF1, but not MAFbx, expression.

    Get PDF
    INTRODUCTION: We investigated the mechanism by which the MERG1a K+ channel increases ubiquitin proteasome proteolysis (UPP). METHODS: Hindlimb suspension and electro-transfer of Merg1a cDNA into mouse gastrocnemius muscles induced atrophy. RESULTS: Atrophic gastrocnemius muscles of hindlimb-suspended mice express Merg1a, Murf1, and Mafbx genes. Electrotransfer of Merg1a significantly decreases muscle fiber size (12.6%) and increases UPP E3 ligase Murf1 mRNA (2.1-fold) and protein (23.7%), but does not affect Mafbx E3 ligase expression. Neither Merg1a-induced decreased fiber size nor Merg1a-induced increased Murf1 expression is curtailed significantly by coexpression of inactive HR-Foxo3a, a gene encoding a transcription factor known to induce Mafbx expression. CONCLUSIONS: The MERG1a K+ channel significantly increases expression of Murf1, but not Mafbx. We explored this expression pattern by expressing inactive Foxo3a and showing that it is not involved in MERG1a-mediated expression of Murf1. These findings suggest that MERG1a may not modulate Murf1 expression through the AKT/FOXO pathway

    Heterogeneity of discontinuous carbon fibre composites: damage initiation captured by Digital Image Correlation

    Get PDF
    This paper aims to identify architectural features which lead to damage initiation and failure in discontinuous carbon fibre composites formed from randomly orientated bundles. A novel multi-camera digital image correlation system was used to simultaneously view strain fields from opposing surfaces of coupons, in order to map progression of failure. The highest strain concentrations were found to occur when the ends of fibre bundles aligned in the direction of loading coincided with underlying transverse bundles. The failure plane was observed to grow between a number of strain concentrations at critical features, coalescing sites of damage to create the final fracture surface. Although potential failure sites can be detected at low global strains in the form of strain concentrations, the strain field observed at low applied loads cannot be extrapolated to reliably predict final failure

    Hierarchical scaling law for the strength of composite fibre bundles

    No full text
    This paper presents an analytical model for size effects on the longitudinal tensile strength of composite fibre bundles. The strength of individual fibres is modelled by a Weibull distribution, while the matrix (or fibre–matrix interface) is represented through a perfectly–plastic shear–lag model. A probabilistic analysis of the failure process in hierarchical bundles (bundles of bundles) is performed, so that a scaling law relating the strength distributions and characteristic lengths of consecutive bundle levels is derived. An efficient numerical scheme (based on asymptotic limits) is proposed, hence coupon– sized bundle strength distributions are obtained almost instantaneously. Parametric studies show that both fibre and matrix properties are critical for bundle strength; model predictions at different scales are validated against experimental results available in the literature
    • …
    corecore