101 research outputs found
Polymorphonuclear neutrophils express the common acute lymphoblastic leukemia antigen.
Monoclonal antibodies J5, VIL-A1, and BA-3, known to react with the common acute lymphoblastic leukemia antigen (CALLA) were found to specifically stain normal human polymorphonuclear neutrophils (PMN). The antigen detected on PMN had a molecular weight (95,000-110,000 mol wt) close to that of CALLA (95,000-100,000 mol wt) and thus these surface membrane antigens are likely related, if not identical. The fluorescent staining intensity of PMN is comparable to that of CALLA-positive leukemic cells and the presence of PMN in patient samples could potentially produce false-positive results in diagnosis
Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic, and acute lymphocytic human leukemia cell lines.
Cyclic AMP (cAMP)-dependent protein kinase may play a role in the functional and morphological differentiation of leukemic cells. In this study, we showed that the cAMP analogs, potent activators of protein kinase recently shown to be selective for either site 1 or site 2 cAMP binding sites of protein kinase, demonstrate potent growth inhibition of acute promyelocytic, chronic myelocytic, and acute lymphocytic leukemic cell lines with no sign of toxicity. The growth inhibition accompanied monocytic differentiation in HL-60 cells and a loss of nuclear terminal deoxynucleotidyl transferase activity in Molt-4 leukemic cells. The growth inhibition also paralleled a decrease in c-myc protein and RI cAMP receptor protein. Thus, cAMP analogs selective for either site 1 or site 2 of the protein kinase appear to restore a coupling of proliferation and maturation in leukemic cells
Induction of megakaryocytic differentiation and modulation of protein kinase gene expression by site-selective cAMP analogs in K-562 human leukemic cells.
Two classes (site 1- and site 2-selective) of cAMP analogs, which either alone or in combination demonstrate a preference for binding to type II rather than type I cAMP-dependent protein kinase isozyme, potently inhibit growth in a spectrum of human cancer cell lines in culture. Treatment of K-562 human leukemic cells for 3 days with 30 and 10 microM 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP) (site 1-selective) resulted in 60% and 20% growth inhibition, respectively (with over 90% viability). N6-Benzyl-cAMP (site 2-selective) (30 microM) treatment resulted in 20% growth inhibition by day 3. When 8-Cl-cAMP (10 microM) and N6-benzyl-cAMP (30 microM) were both added, growth was almost completely arrested. The growth inhibition was accompanied by megakaryocytic differentiation in K-562 cells. The untreated control cells expressed little or no detectable levels of glycoprotein IIb-IIIa surface antigen complex. 8-Cl-cAMP (30 microM) treatment for 3 days substantially increased the antigen expression, while N6-benzyl-cAMP caused little or no change in the antigen expression. When cells were treated with 8-Cl-cAMP in combination with N6-benzyl-cAMP, antigen expression was synergistically enhanced, and cells demonstrated megakaryocyte morphology. By Northern blotting, we examined the mRNA levels of the type I and type II protein kinase regulatory subunits (RI alpha and RII beta), the catalytic subunit, and c-myc during 8-Cl-cAMP treatment. The steady-state level of RII beta cAMP receptor mRNA sharply increased within 1 hr of treatment and remained elevated for 3 days, while that of the RI alpha receptor markedly decreased to below control level within 6 hr and remained low during treatment. However, 8-Cl-cAMP did not affect the mRNA level of the catalytic subunit. 8-Cl-cAMP treatment also brought about a rapid decrease in c-myc mRNA. Thus, differential regulation of cAMP receptor genes is an early event in cAMP-induced differentiation and growth control of K-562 leukemia cells
Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation
Introduction The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. Methods We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. Results We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation. Conclusions In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation
A first-in-human phase I, dose-escalation, multicentre study of HSP990 administered orally in adult patients with advanced solid malignancies
Heat-shock protein 990 (HSP990) is a potent and selective synthetic small-molecule HSP90 inhibitor. The primary objectives of this phase I first-in-human study were to determine dose-limiting toxicities (DLTs), maximum-tolerated dose (MTD) and recommended phase II dose (RP2D). Secondary objectives included characterisation of the safety profile, pharmacokinetics (PKs) and pharmacodynamics (PDs). Heat-shock protein 990 was administered orally once or two times weekly on a 28-day cycle schedule in patients with advanced solid tumours. Dose escalation was guided by a Bayesian logistic regression model with overdose control. A total of 64 patients were enrolled. Fifty-three patients received HSP990 once weekly at 2.5, 5, 10, 20, 30, 50 or 60 mg, whereas 11 patients received HSP990 two times weekly at 25 mg. Median duration of exposure was 8 weeks (range 1-116 weeks) and 12 patients remained on treatment for >16 weeks. Dose-limiting toxicities occurred in seven patients and included diarrhoea, QTc prolongation, ALT/AST elevations and central neurological toxicities. The most common drug-related adverse events were diarrhoea, fatigue and decreased appetite. Further dose escalation beyond 60 mg once weekly was not possible owing to neurological toxicity. Rapid absorption, no drug accumulation and large interpatient variability in PK exposures were observed. No objective responses were seen; 25 patients had a best overall response of stable disease. Heat-shock protein 990 is relatively well tolerated, with neurological toxicity being the most relevant DLT. The single agent MTD/RP2D of HSP990 was declared at 50 mg once weekly
- …