20 research outputs found

    Population Structure and Growth of the Threatened Pen Shell, Pinna rudis (Linnaeus, 1758) in a Western Mediterranean Marine Protected Area

    Get PDF
    Coastal ecosystems are being extensively degraded by human activities. Benthic, slow-growing and long-lived species are highly vulnerable to these impacts. Marine protected areas may avoid biodiversity losses through habitat protection. The pen shell Pinna rudis is a protected species, but scarce data are available on its ecology and biology. The present study is a comprehensive ecological study encompassing several unknown aspects of the growth and inner record in relation to habitat types, density and size distribu¬tion. During the summers of 2011, 2012 and 2013, a total of 418 strip transects were conducted by scuba diving in the Marine Pro¬tected Area of Cabrera National Park (39.14° N, 2.96° E). Samples were conducted across different habitats and depths, exploring 152,146.35 m2 in total. A large range of sizes and ages were recorded within the park with densities ranging from 0 to 6.89 ind./100 m2. Most pen shells were patchily distributed and concentrated mainly in caves. Two hotspots represented the highest densities ever recorded worldwide, showing a potential link to high larval accumulation and settlement. The population size structure showed a unimodal distribution with shell width ranging from 6.2 to 25.0 cm, with an average shell width of 16.0 ± 3.4 cm. The absolute growth was asymptotic, with a maximum age of 28-31 years and length of 45 cm. This study on the biology and ecology of a well-established population of Pinna rudis in the Western Mediterranean could set a baseline for the conservation of this species in other areasVersión del editor0,56

    Unexpected residual habitats raise hope for the survival of the fan mussel Pinna nobilis along the Occitan coast (Northwest Mediterranean Sea)

    Get PDF
    In 2019, the status of the Mediterranean fan mussel Pinna nobilis was elevated to ‘Critically Endangered’ on the IUCN Red List, in response to the pandemic caused by the parasite Haplosporidium pinnae. Identifying refuge habitats, free from parasites, is critical to the survival of the mussel. The distribution of P. nobilis was investigated along the Occitan coast (Northwest Mediterranean Sea) because of the presence of a unique lagoonal system that may provide potential refuges. Interviews with users and managers were conducted to identify target zones where the species was sighted. In situ surveys were carried out to define the main aggregations of fan mussels and characterize the habitat. Line transects were deployed to count and measure individuals to estimate density, abundance, and size distribution. Population densities were variable, ranging from 0.6 ± 0.2 (SE) to 70.8 ± 7.6 ind. 100 m−2, representing one of the highest densities re - ported in the Mediterranean Sea. The total abundance of individuals across the coast was extra - polated to 163 000, with 87% located in Thau and Salses-Leucate, highlighting these lagoons as essential for the survival of the species. This study also revealed the diversity of habitats colonized by P. nobilis. In the context of the pandemic, only the lagoon populations remain unaffected and provide natural refuges that have disappeared from all open-water coastal areas. However, the conditions in these lagoons could become unfavorable, leading to the collapse of the last P. nobilis populations. We therefore propose that Thau and Salses-Leucate lagoons, which harbor the largest remaining populations of P. nobilis, should be declared as conservation priorities.En prens

    Natural hybridization between pen shell species: Pinna rudis and the critically endangered Pinna nobilis may explain parasite resistance in P. nobilis

    Get PDF
    Recently, Pinna nobilis pen shells population in Mediterranean Sea has plummeted due to a Mass Mortality Event caused by an haplosporidian parasite. In consequence, this bivalve species has been included in the IUCN Red List as “Critically Endangered”. In the current scenario, several works are in progress to protect P. nobilis from extinction, being identification of hybrids (P. nobilis x P. rudis) among survivors extremely important for the conservation of the species. Morphological characteristics and molecular analyses were used to identify putative hybrids. A total of 10 individuals of each species (P. nobilis and P. rudis) and 3 doubtful individuals were considered in this study. The putative hybrids showed shell morphology and mantle coloration intermingled exhibiting both P. nobilis and P. rudis traits. Moreover, the analyses of 1150 bp of the 28S gene showed 9 diagnostic sites between P. rudis and P. nobilis, whereas hybrids showed both parental diagnostic alleles at the diagnostic loci. Regarding the multilocus genotypes from the 8 microsatellite markers, the segregation of two Pinna species was clearly detected on the PCoA plot and the 3 hybrids showed intermediate positions. This is the first study evidencing the existence of hybrids P. nobilis x P. rudis, providing molecular methodology for a proper identification of new hybrids. Further studies testing systematically all parasite-resisting isolated P. nobilis should be undertaken to determine if the resistance is resulting from introgression of P. rudis into P. nobilis genome and identifying aspects related to resistance.En prens

    Investigating population dynamics from parentage analysis in the highly endangered fan mussel Pinna nobilis

    Get PDF
    Understanding dispersal patterns is a major focus for conservation biology as it influences local survival and resilience in case of local disturbance, particularly for sessile species. Dispersal can be assessed through parentage analyses by estimating family structure and self-recruitment. This study documents the family structure of a pelagic spawner, Pinna nobilis, which is facing a major crisis that threatens its survival as most of its populations have been decimated by a parasite, Haplosporidium pinnae. In this context, we focused on a single population (Peyrefite, Banyuls-sur- mer, France) where 640 individuals were sampled in 2011, 2015, and 2018 and genotyped for 22 microsatellite markers. Genetic diversity was high and homogeneous among years, with mean allele numbers ranging between 13.6 and 14.8 and observed heterozygosities (Ho) between 0.7121 and 0.7331. Low, but significant, genetic differentiations were found between 2011–2015 and 2015–2018. A parentage analysis described 11 clusters, including one prevailing, and revealed that 46.9% of individuals were involved in half-sib relationships, even between years, suggesting that source populations were recurrent year after year. There were few individuals resampled between years (30 in 2015 and 14 in 2018), indicating a rapid turnover. Considering the large number of half-sib relationships but the low number of relations per individual, we conclude that P. nobilis exhibit homogeneous reproductive success. Self-recruitment was not detected, making this population highly vulnerable as replenishment only relies on connectivity from neighboring populations. In the context of the pandemic caused by H. pinnae, these results will have to be considered when choosing a location to reintroduce individuals in potential future rescue plans.En prensa

    Genetic homogeneity of the critically endangered fan mussel, Pinna nobilis, throughout lagoons of the Gulf of Lion (North‑Western Mediterranean Sea)

    Get PDF
    The fan mussel, Pinna nobilis, endemic to the Mediterranean Sea, is a critically endangered species facing mass mortality events in almost all of its populations, following the introduction of the parasite Haplosporidium pinnae. Such a unique pandemic in a marine organism, which spreads rapidly and with mortality rates reaching up to 100%, could lead to the potential extinction of the species. Only few regions, involving lagoon habitats, remain healthy throughout the entire Mediterranean Sea. This study describes the genetic structure of P. nobilis across the Gulf of Lion, including confined locations such as lagoons and ports. A total of 960 samples were collected among 16 sites distributed at 8 localities, and then genotyped using 22 microsatellite markers. Genetic diversity was high in all sites with mean allele numbers ranging between 10 and 14.6 and with observed heterozygosities (Ho) between 0.679 and 0.704. No genetic differentiation could be identified (FST ranging from 0.0018 to 0.0159) and the percentages of related individuals were low and similar among locations (from 1.6 to 6.5%). Consequently, all fan mussels, over the entire coastline surveyed, including those in the most geographically isolated areas, belong to a large genetically homogeneous population across the Gulf of Lion. Considering the ongoing mass mortality context, this result demonstrates that almost all of the genetic diversity of P. nobilis populations is still preserved even in isolated lagoons, which might represent a refuge habitat for the future of the species.En prensa2,92

    A step back on the conservation of a highly threatened species: opposite signs of recovery on Pinna nobilis population from Mar Menor lagoon

    Get PDF
    The endemic species Pinna nobilis is the most endangered Mediterranean bivalve, facing nearly extinction all over the Mediterranean Sea, hosting its last reservoirs in highly impacted coastal lagoons. Thus, knowledge about the populations' conservation status in these ecosystems is essential. In 2019, the Mar Menor lagoon’s population was considered as a highly vulnerable population (Nebot-Colomer et al., 2021) due to several ecological disasters. The present study represents a continuation of the previous work, which aims to evaluate the resilience of the population, by assessing its reproductive success and maintenance of the population. To do so, between 2019 to 2022, we installed between 23-45 larvae collectors, monitored 13 permanent individual’s plots, and conducted visual searches and censuses. Overall, densities remained stable over years, although the number of individuals alive monitored in permanent plots decrease each year. Moreover, none of the methodologies carried out detected the incorporation of recruits in the population. Our results pointed out to opposite signs of recovery of the species, increasing its vulnerability to future disturbances. Therefore, urgent management and conservation actions focused on restoring the ecosystem and protecting P. nobilis individuals are needed to avoid this population extinction

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.En prens

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    20 Pág.A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.This work was funded by: DG Pesca i Medi Mari (GOIB),EsMarEs (order IEO by MITECO, Spanish government), Life UFE IP-PAF INTEMARES (LIFE15 IPE ES 012) “Gestión integrada, innovadora y participativa de la Red Natura 2000 en el medio marino español,” the research project “Estado de conservación del bivalvo amenazado Pinna nobilis en el PNAC” (OAPN 024/2010), the project RECONNECT (MIS 5017160) of the Programme Interreg V-B “Balkan-Mediterranean 2014–2020.” MTES (French Government), DREAL (Direction Régionale Environnement Aménagement Logement) and Région Occitanie (France) for funding research and monitoring of Pinna.GC and PP were contracted under the INIA-CCAA cooperative research programme for postdoctoral incorporation from the Spanish National Institute for Agricultural and Food Research and Technology (INIA) (DOC INIA 8/2013 and 15/2015). MV-L was supported by a Juan de la Cierva-Incorporación postdoctoral contract (ICJI-2016-29329, MICIU Programme). ML-S and EÁ were supported by a Personal Técnico de Apoyo contract MINECO programme (PTA2015-11709-I and PTA2015-10829- I, respectively). CP and GS were supported by the project RECONNECT (MIS 5017160) financed by the Transnational Cooperation Programme Interreg V-B “Balkan-Mediterranean 2014–2020” and co-funded by the European Union and national funds of the participating countries. CP was supported by Sorbonne University.Peer reviewe

    Spatial distribution and population structure, of the threatened pen shell Pinna rudis, Linnaeus, 1758 in a W Mediterranean Marine Protected Area

    No full text
    Spatial distribution, sizes and densities of Pinna rudis have been studied in the Cabrera National Park. Densities varied spatially within the park (from low 0-0.16 to high 6.89 ind./100 m ) corresponding to a wide range of sizes. Most pen shells were patchily distributed and mainly concentrated in caves. High densities were observed in two hotspots, and represented the highest densities recorded worldwide, possibly linked to retention processes through high larval accumulation. The population size structure showed a unimodal distribution with individuals ranging from 6.2 to 25.0 cm shell width, with an average shell width of 16.0 ± 3.4 cm. Given the scarce data on this species, the present study provides valuable information for the spatial management and conservation of this threatened species

    Noble fan-shell, Pinna nobilis, in Lake Faro (Sicily, Italy): Ineluctable decline or extreme opportunity?

    No full text
    The largest bivalve in the Mediterranean Sea, the fan mussel Pinna nobilis, is at risk of extinction due to mass mortality events (MMEs) caused by the spread of pathogens, Haplosporidium pinnae in particularly. In spite of being a protected area, Lake Faro (northeast Sicily, Italy) suffers from high anthropogenic pressures that affect the P. nobilis population that inhabits the lake and the two canals that connect it to the sea. In the present study, the population’s long-term changes have been monitored in three distinct periods: before the MME (2010), at the beginning of the epidemic spread along the Italian coasts (2018), and after the MME (2020). The survey, carried out by visual census, showed that, relative to 2010, the population of P. nobilis halved in 2018 and disappeared from the canals in 2020; while in the lake, living specimens were only 27.69 % of the total at this time, without recruits. The disappearance of P. nobilis, allowed rapid colonization by the congeneric Pinna rudis and the invasive oyster Pinctada imbricata radiata, which had never been recorded in the Lake Faro system before 2020.En prens
    corecore