3,860 research outputs found
AXONAL TRANSPORT AND TURNOVER OF PROLINE- AND LEUCINE-LABELED PROTEIN IN THE GOLDFISH VISUAL SYSTEM
The suitability of radioactively labeled proline as a marker of axonally transported protein in the goldfish visual system is further investigated and compared with another amino acid, leucine, in double-label experiments. Intraocularly injected proline is incorporated into protein in the eye S times more efficiently than is leucine, while local labeling of brain protein from precursor which has left the eye and entered the blood, (observed in the ipsilateral optic tectum) is five- to eight-fold less from proline than from leucine. The difference is attributed to the superior transport of leucine, an essential amino acid, into the brain from the blood. Once in the brain, the apparent rates of incorporation of the two amino acids are similar. Proline- or leucine-labeled, axonally transported proteins have a longer apparent half-life in the brain than do proteins labeled from intracranial injection of the precursors. By either route, proline-labeled proteins have a longer apparent half-life than leucine-labeled proteins. It is proposed that proline, released from protein breakdown is reutilized to a greater extent than is leucine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65647/1/j.1471-4159.1974.tb10757.x.pd
Assessing the Gene Content of the Megagenome: Sugar Pine (Pinus lambertiana).
Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq have been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here to contribute to the otherwise scarce comparisons of second and third generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data were also used to address questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers
Hydrothermal monitoring in Yellowstone National Park using airborne thermal infrared remote sensing
This paper describes the image acquisition and processing methodology, including surface emissivity and atmospheric corrections, for generating surface temperatures of two active hydrothermal systems in Yellowstone National Park. Airborne thermal infrared (8–12 μm) images were obtained annually from 2007 to 2012 using a FLIR SC640 thermal infrared camera system. Thermal infrared image acquisitions occurred under clear-sky conditions after sunset to meet the objective of providing high-spatial resolution, georectified imagery for hydrothermal monitoring. Comparisons of corrected radiative temperature maps with measured ground and water kinetic temperatures at flight times provided an assessment of temperature accuracy. A repeatable, time-sequence of images for Hot Spring Basin (2007–2012) and Norris Geyser Basin (2008–2012) documented fracture-related changes in temperature and fluid flow for both hydrothermal systems, highlighting the utility of methods for synoptic monitoring of Yellowstone National Park\u27s hydrothermal systems
Genetic and environmental influences on eating behavior - a study of twin pairs reared apart or reared together
This study examined the relative influence of genetic versus environmental factors on specific aspects of eating behavior. Adult monozygotic twins (22 pairs and 3 singleton reared apart, 38 pairs and 9 singleton reared together, age 18-76 years, BMI 17-43 kg/m2) completed the Three Factor Eating Questionnaire. Genetic and environmental variance components were determined for the three eating behavior constructs and their subscales using model-fitting univariate and multivariate analyses. Unique environmental factors had a substantial influence on all eating behavior variables (explaining 45-71% of variance), and most strongly influenced external locus for hunger and strategic dieting behavior of restraint (explaining 71% and 69% of variance, respectively). Genetic factors had a statistically significant influence on only 4 variables: restraint, emotional susceptibility to disinhibition, situational susceptibility to disinhibition, and internal locus for hunger (heritabilities were 52%, 55%, 38% and 50%, respectively). Common environmental factors did not statistically significantly influence any variable assessed in this study. In addition, multivariate analyses showed that disinhibition and hunger share a common influence, while restraint appears to be a distinct construct. These findings suggest that the majority of variation in eating behavior variables is associated with unique environmental factors, and highlights the importance of the environment in facilitating specific eating behaviors that may promote excess weight gain.R01 AR046124 - NIAMS NIH HHS; R01 MH065322 - NIMH NIH HHS; T32 HL069772 - NHLBI NIH HHS; R37 DA018673 - NIDA NIH HHS; R01 DK073321 - NIDDK NIH HHS; R01 DA018673 - NIDA NIH HH
Recommended from our members
NACA Research Memorandums
Report presenting development tests on a model of the Republic F-105 airplane at a Mach number of 0.20. The purpose of the current investigation is to obtain the longitudinal force and moment characteristics of the model equipped with trailing-edge flaps of various spans and deflections. Results regarding the longitudinal stability characteristics and effect of the horizontal tail are provided
In Silico Derivation of HLA-Specific Alloreactivity Potential from Whole Exome Sequencing of Stem Cell Transplant Donors and Recipients: Understanding the Quantitative Immuno-biology of Allogeneic Transplantation
Donor T cell mediated graft vs. host effects may result from the aggregate
alloreactivity to minor histocompatibility antigens (mHA) presented by the HLA
in each donor-recipient pair (DRP) undergoing stem cell transplantation (SCT).
Whole exome sequencing has demonstrated extensive nucleotide sequence variation
in HLA-matched DRP. Non-synonymous single nucleotide polymorphisms (nsSNPs) in
the GVH direction (polymorphisms present in recipient and absent in donor) were
identified in 4 HLA-matched related and 5 unrelated DRP. The nucleotide
sequence flanking each SNP was obtained utilizing the ANNOVAR software package.
All possible nonameric-peptides encoded by the non-synonymous SNP were then
interrogated in-silico for their likelihood to be presented by the HLA class I
molecules in individual DRP, using the Immune-Epitope Database (IEDB) SMM
algorithm. The IEDB-SMM algorithm predicted a median 18,396 peptides/DRP which
bound HLA with an IC50 of <500nM, and 2254 peptides/DRP with an IC50 of <50nM.
Unrelated donors generally had higher numbers of peptides presented by the HLA.
A similarly large library of presented peptides was identified when the data
was interrogated using the Net MHCPan algorithm. These peptides were uniformly
distributed in the various organ systems. The bioinformatic algorithm presented
here demonstrates that there may be a high level of minor histocompatibility
antigen variation in HLA-matched individuals, constituting an HLA-specific
alloreactivity potential. These data provide a possible explanation for how
relatively minor adjustments in GVHD prophylaxis yield relatively similar
outcomes in HLA matched and mismatched SCT recipients.Comment: Abstract: 235, Words: 6422, Figures: 7, Tables: 3, Supplementary
figures: 2, Supplementary tables:
Stem Cell Transplantation As A Dynamical System: Are Clinical Outcomes Deterministic?
Outcomes in stem cell transplantation (SCT) are modeled using probability
theory. However the clinical course following SCT appears to demonstrate many
characteristics of dynamical systems, especially when outcomes are considered
in the context of immune reconstitution. Dynamical systems tend to evolve over
time according to mathematically determined rules. Characteristically, the
future states of the system are predicated on the states preceding them, and
there is sensitivity to initial conditions. In SCT, the interaction between
donor T cells and the recipient may be considered as such a system in which,
graft source, conditioning and early immunosuppression profoundly influence
immune reconstitution over time. This eventually determines clinical outcomes,
either the emergence of tolerance or the development of graft versus host
disease. In this paper parallels between SCT and dynamical systems are explored
and a conceptual framework for developing mathematical models to understand
disparate transplant outcomes is proposed.Comment: 23 pages, 4 figures. Updated version with additional data, 2 new
figures and editorial revisions. New authors adde
- …