769 research outputs found

    Impure Thoughts on Inelastic Dark Matter

    Full text link
    The inelastic dark matter scenario was proposed to reconcile the DAMA annual modulation with null results from other experiments. In this scenario, WIMPs scatter into an excited state, split from the ground state by an energy delta comparable to the available kinetic energy of a Galactic WIMP. We note that for large splittings delta, the dominant scattering at DAMA can occur off of thallium nuclei, with A~205, which are present as a dopant at the 10^-3 level in NaI(Tl) crystals. For a WIMP mass m~100GeV and delta~200keV, we find a region in delta-m-parameter space which is consistent with all experiments. These parameters in particular can be probed in experiments with thallium in their targets, such as KIMS, but are inaccessible to lighter target experiments. Depending on the tail of the WIMP velocity distribution, a highly modulated signal may or may not appear at CRESST-II.Comment: 3 pages, 1 figure, accepted for publication in Physical Review Letter

    A Supersymmetric Twin Higgs

    Full text link
    We present a supersymmetric realization of the twin Higgs mechanism, which cancels off all contributions to the Higgs mass generated above a scale f. Radiative corrections induced by the top quark sector lead to a breaking of the twin sector electroweak symmetry at a scale f ~ TeV. In our sector, below the scale f, these radiative corrections from the top quark are present but greatly weakened, naturally allowing a Z boson mass an order of magnitude below f, even with a top squark mass of order 1 TeV and a messenger scale near the Planck mass. A sufficient quartic interaction for our Higgs boson arises from the usual gauge contribution together with a radiative contribution from a heavy top squark. The mechanism requires the presence of an SU(2)-adjoint superfield, and can be simply unified. Naturalness in these theories is usually associated with light winos and sleptons, and is largely independent of the scale of the colored particles. The assumption of unification naturally predicts the existence of many exotic fields. The theory often has particles which may be stable on collider timescales, including an additional color octet superfield. In the limit that m_SUSY >> f, the mechanism yields a UV completion of the non-supersymmetric twin Higgs, but with the notable improvement of a tree-level quartic for the standard model Higgs. In this framework, a successful UV completion requires the existence of new charged fields well below the scale f.Comment: 20 page

    Visible Cascade Higgs Decays to Four Photons at Hadron Colliders

    Get PDF
    The presence of a new singlet scalar particle a can open up new decay channels for the Higgs boson, through cascades of the form h -> 2a -> X, possibly making discovery through standard model channels impossible. If a is CP-odd, its decay products are particularly sensitive to physics beyond the standard model. Quantum effects from heavy fields can naturally make gluonic decay, a -> 2g, the dominant decay mode, resulting in a h -> 4 g decay which is difficult to observe at hadron colliders, and is allowed by LEP for m_h > 82 GeV. However, there are usually associated decays with photons, either h -> 2g 2gamma or h -> 4gamma, which are more promising. The decay h -> 2g 2gamma only allows discovery of the a particle and not the Higgs whereas h -> 4gamma is a clean channel that can discover both particles. We determine what branching ratios are required for discovery at LHC and find that with 300 fb^-1 of luminosity, a branching ratio of order 10^-4 is sufficient for a large region of Higgs masses. Due to a lower expected luminosity of ~ 8 fb^-1, discovery at the Tevatron requires more than 5 x 10^-3 in branching ratio.Comment: 6 pages, 2 color figures, revtex4 forma

    Using the Energy Spectrum at DAMA/LIBRA to Probe Light Dark Matter

    Full text link
    A weakly interacting massive particle (WIMP) weighing only a few GeV has been invoked as an explanation for the signal from the DAMA/LIBRA experiment. We show that the data from DAMA/LIBRA are now powerful enough to strongly constrain the properties of any putative WIMP. Accounting for the detailed recoil spectrum, a light WIMP with a Maxwellian velocity distribution and a spin-independent (SI) interaction cannot account for the data. Even neglecting the spectrum, much of the parameter space is excluded by limits from the DAMA unmodulated signal at low energies. Significant modifications to the astrophysics or particle physics can open light mass windows.Comment: 5 pages, 5 figure

    Model selection for time series of count data

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordSelecting between competing statistical models is a challenging problem especially when the competing models are non-nested. An effective algorithm is developed in a Bayesian framework for selecting between a parameter-driven autoregressive Poisson regression model and an observationdriven integer valued autoregressive model when modeling time series count data. In order to achieve this a particle MCMC algorithm for the autoregressive Poisson regression model is introduced. The particle filter underpinning the particle MCMC algorithm plays a key role in estimating the marginal likelihood of the autoregressive Poisson regression model via importance sampling and is also utilised to estimate the DIC. The performance of the model selection algorithms are assessed via a simulation study. Two real-life data sets, monthly US polio cases (1970-1983) and monthly benefit claims from the logging industry to the British Columbia Workers Compensation Board (1985-1994) are successfully analysed

    Efficient Model Comparison Techniques for Models Requiring Large Scale Data Augmentation

    Get PDF
    This is the final version of the article. Available from ISBA via the DOI in this record.Selecting between competing statistical models is a challenging problem especially when the competing models are non-nested. In this paper we offer a simple solution by devising an algorithm which combines MCMC and importance sampling to obtain computationally efficient estimates of the marginal likelihood which can then be used to compare the models. The algorithm is successfully applied to a longitudinal epidemic data set, where calculating the marginal likelihood is made more challenging by the presence of large amounts of missing data. In this context, our importance sampling approach is shown to outperform existing methods for computing the marginal likelihood.PT was supported by a University of Warwick PhD scholarship. NA was supported by a PhD scholarship from the Saudi Arabian Government

    Efficient model comparison techniques for models requiring large scale data augmentation

    Get PDF
    Selecting between competing statistical models is a challenging problem especially when the competing models are non-nested. In this paper we offer a simple solution by devising an algorithm which combines MCMC and importance sampling to obtain computationally efficient estimates of the marginal likelihood which can then be used to compare the models. The algorithm is successfully applied to a longitudinal epidemic data set, where calculating the marginal likelihood is made more challenging by the presence of large amounts of missing data. In this context, our importance sampling approach is shown to outperform existing methods for computing the marginal likelihood
    • …
    corecore