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Efficient Model Comparison Techniques
for Models Requiring Large Scale Data

Augmentation

Panayiota Touloupou∗, Naif Alzahrani†, Peter Neal‡,
Simon E. F. Spencer§, and Trevelyan J. McKinley¶

Abstract. Selecting between competing statistical models is a challenging prob-
lem especially when the competing models are non-nested. In this paper we offer a
simple solution by devising an algorithm which combines MCMC and importance
sampling to obtain computationally efficient estimates of the marginal likelihood
which can then be used to compare the models. The algorithm is successfully ap-
plied to a longitudinal epidemic data set, where calculating the marginal likelihood
is made more challenging by the presence of large amounts of missing data. In
this context, our importance sampling approach is shown to outperform existing
methods for computing the marginal likelihood.
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1 Introduction

The central pillar of Bayesian statistics is Bayes’ Theorem. That is, given a parameteric
model M with parameters θ = (θ1, . . . , θd) and data x = (x1, x2, . . . , xn), the joint
distribution of (θ,x) satisfies

π(θ|x)π(x) = π(x|θ)π(θ). (1)

The four terms in (1) are the posterior distribution π(θ|x), the marginal likelihood or
evidence π(x), the likelihood π(x|θ) and the prior distribution π(θ). The terms on the
right hand side of (1) are usually easier to derive than those on the left hand side. The
statistician has considerable control over the prior distribution and this can be chosen
pragmatically to reflect prior beliefs and to be mathematically tractable. For many sta-
tistical problems the likelihood can easily be derived. However, the quantity of primary
interest is usually the posterior distribution. Rearranging (1) it is straightforward to
obtain an expression for π(θ|x) so long as the marginal likelihood can be computed.
This involves computing
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π(x) =

∫
π(x|θ)π(θ)dθ, (2)

which is only possible analytically for a relatively small set of simple models.

A key solution to being unable to obtain an analytical expression for the posterior dis-
tribution is to obtain samples from the posterior distribution using Markov chain Monte
Carlo (MCMC; Metropolis et al., 1953; Hastings, 1970). A major strength of MCMC is
that it circumvents the need to compute π(x) and this has led to its widespread use in
Bayesian statistics over the last 25 years or so. However, Bayesian model choice typically
requires the computation of Bayes Factors (Kass and Raftery, 1995) or posterior model
probabilities, which are both functions of the marginal likelihoods for the competing
models. In Chib (1995) a simple rewriting of (1) was exploited to obtain estimates of
the marginal likelihood using output from a Gibbs sampler. This has been extended in
Chib and Jeliazkov (2001) and Chen (2005) to be used with the general Metropolis-
Hastings algorithm. Importance sampling approaches to estimating the marginal likeli-
hood have also been suggested (Gelfand and Dey, 1994), along with generalisations such
as bridge sampling (Meng and Wong, 1996), which ‘bridges’ information from posterior
and importance samples. More recently approaches have exploited the ‘thermodynamic
integral’ such as power posterior methods Friel and Pettitt (2008). Alternative methods
such as Sequential Monte Carlo (e.g. Zhou et al., 2015) and nested sampling (Skilling,
2004) do not require any MCMC: computation of the marginal likelihood and samples
from the posterior distribution are produced simultaneously. A potential drawback for
many of the above approaches to marginal likelihood estimation is that it may not be
obvious how to apply them efficiently to models incorporating large amounts of missing
data.

It should be noted that there are model comparison techniques such as reversible
jump (RJ)MCMC (Green, 1995) which can used to compare models without the need
to compute the marginal likelihood. RJMCMC works well for nested models where it
is straightforward to define a good transition rule for models with different parameters.
However, in the case where we have large amounts of missing data it is often necessary to
use some form of data augmentation technique, where the missing information is inferred
alongside the other parameters of the model. Using RJMCMC becomes much harder in
these cases since the dimension of the parameter space (including the augmented data)
becomes large. This is exacerbated further when the missing information between the
competing models has a different structure. In this latter case the use of intermediary
(bridging) models (Karagiannis and Andrieu, 2013) to move between the models of
interest is a possibility.

The aim of the current paper is to demonstrate a straightforward mechanism for
estimating the marginal likelihood of models with large amounts of missing data. The
idea combines MCMC and importance sampling in a natural and semi-automatic man-
ner to produce marginal likelihood estimates. The details of the algorithm developed are
given Section 2. In Section 3 we consider a linear mixed model example. This enables
us to demonstrate two important facets of the approach. Firstly, for the special case of
the linear model we can compare our estimates of the marginal likelihood with exact
computations which show very good agreement. Secondly, we show that making the dis-
tinction between model parameters and augmented data (random effects terms) assists
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tremendously in devising an efficient estimator of the marginal likelihood. In Section 4
we consider final outcome household epidemic data where in the special case of the Reed-
Frost model exact, but expensive, computation of the marginal likelihood is possible for
comparison purposes. In Section 5 we apply the methodology to an epidemic example,
for the transmission of Streptococcus pneumoniae (Melegaro et al., 2004) comparing our
algorithm to existing methods for computing the marginal likelihood demonstrating its
simplicity and effectiveness in the presence of missing data. Finally in Section 6 we
briefly discuss extensions and limitations of the algorithm.

2 Algorithm

Our starting point in the estimation of π(x) is to note that we can rewrite (2) as

π(x) =

∫
θ

π(x|θ)π(θ)
q(θ)

q(θ) dθ, (3)

where q(θ) denotes a d-dimensional probability density function. We assume that if

π(θ) > 0 then q(θ) > 0. Then an unbiased estimator, P̂q of π(x) is obtained by sampling
θ1,θ2, . . . ,θN from q(θ) and setting

P̂q =
1

N

N∑
i=1

π(x|θi)
π(θi)

q(θi)
. (4)

Thus P̂q is an importance sampled (see, for example, Ripley, 1987) estimate of π(x),
and the effectiveness of the estimator given by (4) depends upon the variability of
π(x|θ)π(θ)/q(θ).

The remainder of the paper and this Section, in particular, is focussed on how we
can effectively exploit (4) in the estimation of π(x). The first observation is that the
optimal choice of q(θ) is π(θ|x), the posterior density but if we knew this, then π(x)
would also be known. A simple solution is to use output from an MCMC algorithm to
inform the proposal distribution (Clyde et al., 2007). For most statistical models the
likelihood times the prior is unimodal for sufficiently large n. In these circumstances,
the posterior distribution of θ is almost always approximately Gaussian with mean θ̂,
the posterior mode, and covariance matrix Σ = −I(θ̂)−1, where I(θ) denotes the Fisher
information evaluated at θ. That is, we have a central limit theorem type behaviour
similar to that observed for maximum likelihood estimators as n → ∞. This central limit
theorem approximation is implicitly behind the Laplace approximations of integrals used
in Tierney and Kadane (1986), (2.2) and Gelfand and Dey (1994), (8). This underpins
the simple suggestion in Clyde et al. (2007) of using a multivariate t-distribution as an
importance sampling distribution with location and scale parameters estimated from
MCMC output. Alternatively, we can use a “defense mixture” (Hesterberg, 1995),

qD(θ) = pφ(θ;μ,Σ) + (1− p)π(θ), (5)

where φ(·;μ,Σ) is the probability density function of a multivariate Gaussian distribu-
tion with mean μ and covariance matrix Σ, estimated from the MCMC output, and
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p is a mixing proportion. This proposal ensures that the ratio of the prior density to
the proposal density is bounded above by 1/(1− p) with p typically chosen to be 0.95.
We found that a t-distribution proposal was preferable in Sections 3 and 4, whereas the
defense mixture proposal was the preferred choice in Section 5.

We are now in position to outline the three step algorithmic procedure, which is
implemented in the paper followed by highlighting the scope and limitation of the
approach. The steps are as follows:

1. Obtain a sample θ1,θ2, . . . ,θK from the (approximate) posterior distribution,
π(θ|x). Throughout this paper, and in practice, this will generally be achieved
using MCMC with K chosen such that the sample is representative of the poste-
rior distribution. However, any alternative method for obtaining an approximate
sample from the posterior distribution could be used.

2. Use the sample θ1,θ2, . . . ,θK to derive a parametric approximation of the poste-
rior distribution and let q(·) denote the corresponding probability density function.
For example, choosing q(·) either to be a multivariate t-distribution or a “defense
mixture” will usually work well.

3. Sample θ̃1, θ̃2, . . . , θ̃N from q(·). (The tilde notation is used to distinguish the
sample obtained from q(·) from the sample used to estimate q(·).) For each i =
1, 2, . . . , N , compute π(x|θ̃i) and estimate π(x) using (4).

In situations where π(x|θ) is analytically available, the construction of an MCMC al-
gorithm to sample from π(θ|x) will be straightforward and implementation of the al-
gorithm will be trivial. Then the procedure becomes a simple and fast appendage to
a standard MCMC algorithm. However, assuming an independent and identically dis-
tributed sample from q(·), the variance of the importance sampling estimator given in
(4) is given by

Var(P̂q) = N−1

∫ (
π(x|θ)π(θ)

q(θ)
− π(x)

)2

q(θ) dθ

= N−1π(x)2
∫ (

π(θ|x)
q(θ)

− 1

)2

q(θ) dθ,

which again highlights the importance of the proposal q(θ) resembling the posterior
π(θ|x) as closely as possible. As the dimension of θ increases the variance of the esti-
mator will typically grow due to the curse of dimensionality (see Doucet and Johansen,
2011, page 671 for an explanation) and this is the main potential limitation. The exam-
ples in Section 5 show that the algorithm can be effectively used for moderate numbers
of parameters with d = 11. In passing we remark that a dependent sample from q(·)
in Step 3 of the algorithm can be exploited to reduce the variance of the estimator. A
prime example is the defense mixture proposal where pN and (1 − p)N samples are
drawn from the multivariate Gaussian distribution and the prior, respectively.

The motivation for the work are in circumstances where π(x|θi) is not readily avail-
able, see Sections 3 and 5, and further work is required to implement the algorithm.
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When π(x|θ) is not available, it is often possible, with the addition of augmented data
y, to obtain an analytical expression for π(x,y|θ). This can then be utilised within
an MCMC algorithm to obtain samples from the joint posterior π(θ,y|x). Devising an
importance sampling proposal distribution q(θ,y) approximating π(θ,y|x) will not be
practical if y is high-dimensional, for example, the dimension of y is equal to or greater
to n, the dimension of x. See, for example, Section 3 for limitations of this approach.
The solution that we propose is to use the marginal MCMC output from π(θ|x) to
inform the proposal distribution q(θ) in the importance sampling above, and then to
separately consider the computation of π(x|θ), which will be largely problem specific. In
the linear mixed model example in Section 3, the distribution of yi (random effect term)
is readily available given θ and xi, and hence we can sample the random effects y from
their full conditional distributions. This approach extends to the epidemic model in Sec-
tion 5, where y represents the unobserved infectious status of individuals with respect
to Streptococcus pneumoniae carriage and the Forward Filtering Backwards Sampling
(FFBS) algorithm (Carter and Kohn, 1994) can be used to calculate π(y|x,θ), and
hence π(x|θ). In future work we will show how particle filtering, (Gordon et al., 1993),
can be applied to estimate π(x|θ) extending the scope of the algorithm with particular
reference to Poisson regression models (Zeger, 1988). The estimation of π(x|θ) can be
potentially computationally costly and thus the overall cost of the algorithm needs to be
considered. However, the computation of the {π(x|θ̃i)}’s can, in contrast to the MCMC
runs, be undertaken in parallel, which can ease the computational burden.

Our approach can be used to estimate Bayes’ Factors in objective model selection
where for two competing models, common model parameters are assigned improper,
non-informative priors. Consider two competing models M1 and M2 with parameters
θ1 = (φ,ω1) and θ2 = (φ,ω2), respectively, and let φ denote parameters common to
both models. Let Φ ⊆ R

d denote the sample space for φ. Suppose that a common prior
π0(φ) is chosen for φ in both models and that the prior for Mk (k = 1, 2) factorises
as πk(θ

k) = π0(φ)πk1(ω
k), where πk1(·) is assumed to be a proper probability density.

We can then choose φ0 ∈ Φ as a reference point and set π̃0(φ0) = 1 and for all φ ∈ Φ,
set π̃0(φ) = π0(φ)/π0(φ0). Let

πk(x) =

∫ ∫
πk(x|φ,ωk)π0(φ)πk1(ω

k) dφ dωk, (6)

and

π̃k(x) =

∫ ∫
πk(x|φ,ωk)π̃0(φ)πk1(ω

k) dφ dωk. (7)

Then letting B12 = π1(x)/π2(x) denote the Bayes’ Factor between models 1 and 2, it
follows from (6) and (7) that

B12 =
π1(x)

π2(x)
=

π̃1(x)

π̃2(x)
. (8)

Therefore it suffices to estimate π̃k(x) (k = 1, 2) in order to estimate B12. The estimation
of π̃k(x) can proceed along the same lines as πk(x) in (4) by selecting a proper proposal
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density qk(·) and using samples (φk
1 ,ω

k
1), . . . , (φ

k
N ,ωk

N ) from qk(·) to estimate π̃k(x)
by

P̃ k
q =

1

N

N∑
i=1

πk(x|φk
i ,ω

k
i )

π̃0(φ
k
i )πk1(ω

k
i )

qk(φ
k
i ,ω

k
i )

. (9)

In this case the “defense mixture” proposal is inappropriate but a multivariate t-
distribution can be used as an effective proposal distribution.

In our approach each model is required to be analysed separately and the computa-
tional cost increases approximately linearly in the number of models to be compared.
Therefore this approach is not competitive for comparing large numbers of nested mod-
els, for example, the inclusion or exclusion of p covariates in a generalised linear model,
a situation where reversible jump MCMC (Green, 1995) can be effectively applied. Our
approach is more suited to comparing a small number of competing models which po-
tentially have rather different dynamics such as integer valued autoregressive (Neal and
Subba Rao, 2007) and Poisson regression (Zeger, 1988) models for integer valued time
series, an example which we will present in future work. The approach is particularly
suited to situations which allow the posterior distribution of the parameters to be ap-
proximately Gaussian, assisting in the construction q(·), but this assumption can be
relaxed. Furthermore, the appropriateness of a Gaussian, or t-distribution approxima-
tion of the posterior can easily be assessed from the MCMC output.

3 Linear mixed model

We illustrate our methodology on the linear mixed model. In particular we may wish
to ask the model choice question of whether it is necessary to include a random effect
in the model or not. This question would be extremely challenging to address using re-
versible jump MCMC because it would require an efficient proposal distribution for the
complete set of random effects when jumping between models. However it is straight-
forward to fit both models using MCMC due to the availability of a Gibbs sampler. The
full conditional distribution of the random effects then unlocks an efficient importance
sampling algorithm for the calculation of the marginal likelihood.

The simplest linear mixed model takes the following form. Let the data be divided
into m units or clusters, and assume that

xij = zTijβ + δi + εij , (10)

for i = 1, . . . ,m and j = 1, . . . , ni, where εij ∼ N(0, σ2) are independent and identically
distributed errors. We assume that the random effects satisfy δi|φ ∼ N(0, φ2) and are
independent conditional on the standard deviation parameter φ. The vector of unknown
parameters for the model is given by θ = (β, σ, δ, φ). Let Z denote the design matrix of
the fixed effects, with rows zTij and let W be the design matrix for the random effects,
so that x = Zβ + Wδ + ε. For a review of Bayesian approaches to generalized linear
mixed models, see for example Fong et al. (2010).
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3.1 Simulation study

To illustrate the application of our importance sampling technique we performed a
simulation study where the true model is known. We simulated data for m = 50 clusters,
each containing ni = 3 observations, giving n = 150 in total. We generated 3 predictor
variables for each cluster by drawing m values from a standard normal distribution. We
fixed our true parameters to be βT = (10,−20, 30), σ = 1 and φ = 2. For every cluster
we assumed the same predictors and drew a random effect δi from δi|φ ∼ N(0, φ2).
Finally, the observed data x = [xij ] were drawn from (10).

3.2 Model 1 – with random effects

For the fixed effects we chose Zellner’s g-prior (Smith and Kohn, 1996), namely β|σ ∼
N(0, gσ2(ZTZ)−1). In our application we chose g = n, known as the unit information
prior (Kohn et al., 2001). For the variance parameters we used inverse gamma priors:
σ2 ∼ IG(aσ, bσ) and φ2 ∼ IG(aφ, bφ), setting these parameters equal to 1 in our im-
plementation. These conjugate priors allow a Gibbs sampling algorithm to sample from
the posterior distribution. The full conditional distributions are given by,

β, σ2|x, δ ∼ NIG(m∗,V∗, a∗, b∗), (11)

m∗ =
g

1 + g
(ZTZ)−1ZT (x−Wδ),

V∗ =
g

1 + g
(ZTZ)−1,

a∗ = aσ +
n

2
, (12)

b∗ = bσ +
1

2
(x−Wδ)T

(
In − g

1 + g
Z(ZTZ)−1ZT

)
(x−Wδ), (13)

φ|δ ∼ IG(aφ +
m

2
, bφ +

1

2
δT δ), (14)

δi|x,β, σ, φ ∼ N

⎛
⎝ 1

κi

ni∑
j=1

xij − zTijβ, κ
−1
i

⎞
⎠ , (15)

κi =
1

φ2
+

ni

σ2
.

After a burn-in of 1000 iterations, we drew 10000 samples from the MCMC. To demon-
strate the increased efficiency provided by making use of the approach to handle missing
data described in Section 2, we considered two importance sampling estimators.

Full posterior importance sampling

In the full posterior importance sampler, we estimate the mean and covariance matrix
for the full parameter vector θ including the random effects, giving m+5 parameters in
total. We then used these as the centre and scale matrix for multivariate t-distributed
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proposal distribution with 5 degrees of freedom, with density q1(θ). We drew N =
1000 samples from this proposal, denoting them by {θi}Ni=1. The importance sampling

estimator is then P̂q1 given in (4).

Marginal posterior importance sampling

In the second importance sampling approach we make use of missing data technique
described in Section 2. We calculate the marginal mean and covariance matrix for the
(restricted) parameter vector ψ = (β, σ, φ). Again we use these as the centre and scale
matrix for a multivariate t-distributed proposal with 5 degrees of freedom, but this time
it has just 5 dimensions. For each ψi that is drawn from the proposal q2(ψ), we sample
the random effects δi from their full conditional distribution in (15). The importance
proposal is therefore given by q2(ψ)π(δ|x,ψ).

Note that in both of these estimators we have chosen to parameterise our proposal
distribution in terms of the standard deviations (σ and φ) rather than the variances in
order to lighten the tails. However since the priors are written in terms of the variance
parameters we must multiply the proposal densities q1(θ) and q2(ψ) by the Jacobian
σφ/4 to obtain the correct marginal likelihood estimator.

3.3 Model 0 – without random effects

The model with no random effects is just a linear model, given by xij = zTijβ + εij . We

assume the same conjugate priors for β and σ2 described in Section 3.2 and in this case
the marginal likelihood may be calculated analytically, namely,

π(x) =
baσ
σ Γ(a∗)

(2π)n/2Γ(aσ)
(b∗)−a∗

,

where a∗ and b∗ are given by (12) and (13) evaluated at δ = 0. For comparison purposes,
we also use our importance sampling approach based on 10000 samples drawn directly
from the joint posterior for β and σ. The importance proposal q was again based on a
t-distribution with 5 degrees of freedom.

3.4 Results

Figure 1 shows the variation in 50 Monte Carlo replicates of each importance sampling
estimator, based on 1000 samples. The importance sampling estimates for the linear
model fall close to the true log marginal likelihood value, indicated by a dashed ver-
tical line. For the linear mixed model treating the random effects as missing data and
drawing them from their full conditional distribution greatly reduces the variance of the
importance sampling estimator. The Monte Carlo standard errors for the linear model
and linear mixed model with missing data were 0.0123 and 0.0171, compared with 0.106
for the linear mixed model with an importance proposal for the full parameter vector.

When we increase the number of clusters m from 50 to 500 (Figure 2 of the sup-
plementary material (Touloupou et al., 2017)) the Monte Carlo standard error for the
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Figure 1: Variation of the log marginal likelihood estimates for the linear model and
linear mixed model (lmm) over 50 replicates. For the lmm, in the full posterior approach
the whole parameter vector (including random effects) was approximated in the impor-
tance proposal; in the marginal posterior approach the random effects were left out, and
drawn from their full conditional distribution. A dashed vertical line indicates the true
log marginal likelihood for the linear model.

marginal posterior approach was 0.015, showing no increase due to the increase in
missing data. For comparison, the Monte Carlo standard error for the full parameter
importance sampling approach increased to 0.825 for m = 500.

The precision of the marginal likelihood estimator is important when it comes to
estimating the Bayes factor. With m = 50 clusters the 50 Monte Carlo estimates of
Bayes factor in favour of the linear model (from the missing data approach) fall between
1.279 and 1.359 for the marginal posterior importance sampling estimator. When the
full posterior importance sampling estimator is used the 50 Bayes factors fall between
1.032 and 1.664, and it’s not hard to envisage situations in which this loss of precision
could lead to an incorrect conclusion.

4 Final outcome epidemic data

In this Section, we look at applying the methodology developed in Section 2 to final
outcome household epidemic data. Specifically, we assume that the data consist of the
number of individuals infected during the course of an epidemic in a number of house-
holds of various sizes. We follow Addy et al. (1991) and Neal and Kypraios (2015) in
assuming that the epidemics in each of the households are independent with each mem-
ber of a household having probability pG of being infected globally from the community
at large and the within household epidemic spread emanating from the individuals in-
fected globally. Within each household the disease dynamics are assumed to follow a
homogeneously mixing, generalised stochastic epidemic model, where infectious indi-
viduals have independent and identically distributed infectious periods according to an
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arbitrary, but specified, non-negative probability distribution Q with E[Q] = 1 and dur-
ing their infectious period make contact with a given susceptible in their household at
the points of a homogeneous Poisson point process with rate λL. The special case where
Q ≡ 1 has the same final outcomes in terms of those infected as a household Reed-Frost
model within household infection probability pL = 1−exp(−λL). Throughout we assign
an Exp(1) prior to λL which corresponds to a U(0, 1) prior on pL and also a U(0, 1)
prior on pG.

For the household Reed-Frost epidemic it is trivial to adapt the approach of Neal
and Kypraios (2015), Section 3.3 to compute the marginal likelihood exactly. Details
of how this can be done are given in the supplementary material (Touloupou et al.,
2017). Therefore we are able to compare our estimation of the marginal likelihood
with the exact marginal likelihood. The exact computation of the marginal likelihood
grows exponentially in the total number of households whilst the MCMC algorithm for
estimating the parameters and the algorithm for estimating the marginal likelihood have
essentially constant computational cost for a given maximum household size. Therefore
the exact computation of the marginal likelihood is only practical for data containing
a small number of households and we apply it to the influenza data sets from Seattle,
reported in Fox and Hall (1980), which contain approximately 90 households each.

Exact computation of the marginal likelihood is not possible for general Q. Therefore
we use our approach to compare three different choices of infectious period Q ≡ 1,
Q ∼ Gamma(2, 2) and Q ∼ Exp(1) to study which infectious period distribution is most
applicable for a given epidemic data set. This mimics analysis carried out in Addy et
al. (1991) in a maximum likelihood framework where two infectious periods, a constant
and a gamma with shape parameter 2, were compared for a combined data set of two
influenza outbreaks in Tecumseh, Michigan, see Monto et al. (1985).

Let x denote the observed epidemic data. The recursive equations given in Ball et al.
(1997), (3.12), can be used to compute Ph

k (h = 1, 2, . . . ; k = 0, 1, . . . , h), the probability
of observing k individuals out of h being infected in a household of size h. Therefore
it is straightforward to compute π(x|λL, pG) or π(x|pL, pG) for the Reed-Frost model.
Consequently, it is trivial to construct a random walk Metropolis algorithm to sample
from π(λL, pG|x) (or π(pL, pG|x) for the Reed-Frost model) and to estimate the marginal
likelihood using samples from a proposal density q(λL, pG), which is a multivariate t
distribution with 10 degrees of freedom and mean and covariance matrix obtained from
the MCMC samples.

We applied the algorithm for estimating the marginal likelihood to the two Seattle
data sets and the Tecumseh data set for each of the three infectious period distributions.
In all cases we ran the MCMC algorithm for 11000 iterations discarding the first 1000
iterations as burn-in and then used 1000 samples to estimate the marginal likelihood. For
the Seattle influenza A data set with maximum household size of 3 it took approximately
2.4 seconds to compute each marginal likelihood in R on a desktop PC with Intel i5
processor. For the Seattle influenza B data set and the Tecumseh data set with maximum
household size of 5 it took approximately 5 seconds to compute each marginal likelihood.
The log marginal likelihoods are given in Table 1, they show that is little information
in the data to choose between different Q, agreeing with findings in Addy et al. (1991)
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and Ball et al. (1997). Interestingly Q ∼ Exp(1) is preferred for the Seattle influenza
A and Tecumseh data sets, whereas Q ≡ 1 is Seattle influenza B data set. For the
two Seattle data sets we also computed the exact log marginal likelihoods, −15.08 and
−24.98, for the household Reed-Frost model applied to the Seattle influenza A and
influenza B data sets, respectively. For the Seattle data sets we repeated the estimation
of the log marginal likelihood 100 times for the Reed-Frost model to obtain Monte Carlo
standard errors for the estimated log marginal likelihoods of 0.0062 and 0.0073 for the
Seattle influenza A and Seattle influenza B data sets, respectively, demonstrating good
agreement between the estimated and exact log marginal likelihoods. The calculations
of the exact marginal likelihood took approximately 0.5 and 14 seconds for the Seattle
influenza A and influenza B data sets, respectively. The code for computing the exact
marginal likelihood could not be applied to the combined Tecumseh data set, or even
the separate Tecumseh data sets (see, for example Clancy and O’Neill, 2007) since
enumerating over all possible augmented data states exceeded R’s memory allocation.
This problem could be circumvented to some extent using sufficient statistics as in Neal
and Kypraios (2015) but the current approach offers a simple and fast alternative.

Data Set Q ∼ Exp(1) Q ∼ Gamma(2, 2) Q ≡ 1
Seattle A -14.69 -14.86 -15.08
Seattle B -25.27 -25.11 -24.99
Tecumseh -45.58 -45.59 -45.87

Table 1: Estimated log marginal likelihood for the three influenza data sets using the
three choices of infectious period distribution; Q ∼ Exp(1), Q ∼ Gamma(2, 2) and
Q ≡ 1.

5 Longitudinal epidemic model

5.1 Introduction

In this Section, we explore the application of the methodology developed in Section 2 to
a scenario where π(x|θ) is not readily available, and data augmentation is required both
with in the MCMC algorithm and estimation of the marginal likelihood. The example
used is based on a longitudinal household study of preschool children under 3 years old
and all household members was conducted in the United Kingdom from October 2001
to July 2002 (Hussain et al., 2005). The size of the families varied from 2 to 7, although
in most there were 3 or 4 members. All family members were examined for Streptococcus
pneumoniae carriage (Pnc) using nasopharyngeal swabs once every 4 weeks over a 10-
month period. The carriage status of each individual was recorded at each occasion as
1, if a carrier or 0, if a non-carrier.

Following Melegaro et al. (2004), we consider an Susceptible-Infected-Susceptible
(SIS) epidemic model for the transmission of Pnc within a household. At any given
time, an individual is assumed to be in either the susceptible non-carrier state 0, or
the infectious carrier state 1. The population is divided into two age groups, children
under 5 years old and everyone else greater than 5 years (whom for brevity we refer to
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as ‘adults’), denoted by i = 1, 2, respectively. Let I1(t) and I2(t) denote the numbers of
carrier children and carrier adults in the household at time t. The transition between
state 0 and 1 is referred to as an infection and the reverse transition is referred to as
clearance. The transition probabilities between states in a short time interval δt are
defined for an individual in the age group i:

P (Infection in (t, t+ δt])=1−exp

{
−
(
ki +

β1i I1(t) + β2i I2(t)

(z − 1)w

)
δt

}
, (16)

P (Clearance in (t, t+ δt])=1−exp(−μi · δt), (17)

where μi and ki are the clearance and the community acquisition rates respectively
for age group i and z is the household size. The rate βij is the transmission rate from
an infected individual in age group i to an uninfected individual in age group j. The
term (z − 1)w in (16) represents a density correction factor, where w corresponds to
the level of density dependence and (z − 1) is the number of other family members in
a household size z. For example, w = 1 represents frequency dependent transmission,
where the average number of contacts is equal for each individual in the population.
Finally, the probability of infection at the initial swab is assumed to be πi for age group
i. We refer to this model as M1.

Given the dependence of the carriage status of all individuals in a household, the
within household carriage dynamics in a household of size z can be modelled as a discrete
time Markov chain with 2z states (all possible binary vectors of infectious statuses of the
z individuals). The presence of unobserved events, that may have occurred in between
swabbing intervals, has been discussed previously (Auranen et al., 2000), and must be
considered in setting up the model. The approach adopted in this paper to overcome
this issue is to use Bayesian data augmentation methods. Model fitting is performed
within a Bayesian framework using an MCMC algorithm, imputing the unobserved
carriage states in each household. Let Oj ⊆ {1, 2, . . . , T} denote the set of prescheduled
observation times of household j = 1, 2, . . . , J , and let Uj = {1, 2, . . . , T} \ Oj denote
the unobserved times. Let xj,t be the binary vector of carriage states for individuals in
household j at observation time t. The observed longitudinal dataX = [xj,t]t∈Oj ;j=1,...,J

consists of the household carriage statuses xj,t at the observation times. Similarly let
yj,t be the corresponding latent carriage status of household j at time t ∈ Uj , and form
the corresponding missing data matrix Y = [yj,t]t∈Uj ;j=1,...,J . Let θ denote the vector
of model parameters, including the rates of acquiring and clearing carriage, the density
correction w and the initial probabilities of carriage.

The remainder of this Section is structured as follows. In Sections 5.2 and 5.3,
we introduce the MCMC algorithm and importance sampling algorithms, respectively,
required to implement our approach. In particular, we introduce the Forward Filtering
Backward Sampling algorithm (Carter and Kohn, 1994) to assist with dealing with the
augmented data y. In Sections 5.4 and 5.5 simulated data (where the true model is
known) are used to illustrate the implementation, performance and applicability of the
proposed method and its comparative performance against a range of alternatives. We
demonstrate that for a fixed computational cost our approach performs at least as well
as existing methods, and with the exception of bridge sampling (Meng and Wong, 1996),
performs considerably better.
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5.2 Markov chain Monte Carlo algorithm

In the Bayesian approach, the missing data is represented as a nuisance parameter and
inferred from the observed data like any other parameter. The joint posterior density
of the latent carriage states y, and the model parameters θ can be factorized as:

π(y,θ | x) ∝ P (y,x | θ)π(θ)

= π(θ)

J∏
j=1

T∏
t=1

P (zj,t|zj,t−1,θ),

where zj,t equals xj,t if t ∈ Oj ; yj,t if t ∈ Uj and ∅ if t = 0. This factorization is based
on the assumption that conditionally on the model parameters, the carriage process is
assumed to be independent across households.

In order to simulate from the posterior distribution, we construct an MCMC algo-
rithm that employs both Gibbs and Metropolis-Hastings updates. The main emphasis is
on sampling the unobserved carriage process y, which we do using a Gibbs step via the
Forward Filtering Backward Sampling (FFBS) algorithm (Carter and Kohn, 1994). In
the first part of this algorithm, recursive filtering equations (Anderson and Moore, 1979)
are used to calculate P (yj,t | zj,t+1,xj,Oj∩{1:t},θ) for each t ∈ Uj working forwards in
time. The second part then works backwards through time, simulating yj,t from these
conditionals, starting with t = max(Uj) and ending with t = min(Uj). The model pa-
rameters π1 and π2 are updated using Gibbs updates and the remaining parameters are
updated jointly using an adaptive Metropolis-Hastings random walk proposal (Roberts
and Rosenthal, 2009).

5.3 Marginal likelihood estimation via importance sampling

The availability of the full conditional distribution of the missing data P (y|x,θ) from the
FFBS algorithm allows the missing data component y to be updated using a Gibb’s step
in the MCMC algorithm. This full conditional can be exploited further in the estimation
of the marginal likelihood. We require P (x|θ) in order to form the importance sampling
estimator in (4). Using Bayes’ Theorem we can rewrite this as

P (x|θ) = P (x|y,θ)P (y|θ)
P (y|x,θ) =

P (x,y|θ)
P (y|x,θ) , (18)

for any y such that P (y|x,θ) > 0. Therefore evaluation of P (x|θ) at the point θ can
be done by evaluating the right-hand-side of (18) with any suitable y. A suitable y is
guaranteed if it is sampled from the full conditional distribution y|(x,θ).

Our approach proceeds as follows. In step 1 we use MCMC to obtain samples from
the joint posterior of θ and y. In step 2 we fit a multivariate normal distribution to
the posterior samples for θ only, and use it to construct a normalised proposal density
q(θ). In step 3, we obtain N samples from q(θ) and for each sample θi we obtain a
corresponding sample for the missing data yi using the Forward Filtering Backward
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Sampling algorithm. We then use these samples to calculate the importance sampling
estimator of the marginal likelihood:

P̂q(x) =
1

N

N∑
i=1

P (x,yi|θi)

P (yi|x,θi)

π(θi)

q(θi)
. (19)

The choice of q(θ) is important for the accuracy and computational efficiency of the
importance sampling approach. As discussed earlier, we want q(θ) to be a good approx-

imation of π(θ|x) but with heavier tails to ensure that the variance of P̂q is small. We
therefore investigate a range of proposals distributions based on a fitted multivariate
normal distribution with mean μ and covariance matrix Σ based on the MCMC output.
These include drawing θ from ISNj : N(μ, jΣ) (j = 1, 2, 3), a multivariate Normal dis-
tribution with different variances; IStd : td(μ,Σ) (d = 4, 6, 8), a multivariate Student’s
t distribution with d degrees of freedom, mean μ and covariance matrix d

d−2Σ (if d > 2)
and ISmix : q(θ) = 0.95×N(θ;μ,Σ) + 0.05× π(θ) (mixture of a multivariate Normal
density and the prior).

5.4 Marginal likelihood estimation

We consider the problem of estimating the marginal likelihood under the model in-
troduced in Section 5.1, using the methods described above. These estimators were
evaluated on synthetic data analogous to the real data in Melegaro et al. (2004). More
specifically, the parameter values were based on the maximum likelihood estimates from
the analysis of Pnc data; parameters were chosen to be k1 = 0.012, k2 = 0.004, β11 =
0.047, β12 = 0.005, β21 = 0.106, β22 = 0.048, μ1 = 0.020, μ2 = 0.053, w = 1.184, π1 =
0.425 and π2 = 0.095. We set the time-interval δt = 7. Only complete family transi-
tions, where the infection state of all household members was known on two consecutive
observations, were used previously (Melegaro et al., 2004; 51% of the full dataset). Al-
though our approach could easily handle the missing data, for comparability we match
the number of complete transitions by family size and number of adults to generate our
data set; a total of 66 families comprising 260 individuals including 94 children under
5 years. The simulations were designed so that real and simulated datasets have the
same sampling times. The hidden variable y consists of 1650 yj,t’s, comprising 6500
unobserved binary variables in total.

We compare the proposed importance sampling approach for estimating the marginal
likelihood (based on the 7 proposal densities) with bridge sampling (Meng and Wong,
1996) (using the importance samples from ISmix), harmonic mean (Newton and Raftery,
1994), Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) and the power posteriors
method (Friel and Pettitt, 2008). Details of the computation of these estimators are
given in the supplementary material (Touloupou et al., 2017). To compare the different
methods on a fair basis, we chose to dedicate equivalent amounts of computational
effort for estimation of the log marginal likelihood, instead of fixing the total number
of samples.

Implementation details are given as follows. The construction of the importance
density was based on 25000 MCMC samples after a burn-in of 5000, obtained from the
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MCMC sampler described in Section 5.2. These posterior samples were used to estimate
the reference parameters μ and Σ for a multivariate Student’s t or normal proposal
density. The marginal likelihood estimate was then based on 25000 importance sampling
draws from the obtained proposal density q(θ), using the estimator in (19). To produce
the bridge sampling estimate, the 25000 samples from ISmix were combined with 250
thinned samples from the MCMC. In order to apply Chib’s methods, the same posterior
samples were used for computing the high posterior density point. The log marginal was
estimated by generating 22000 draws in each complete and reduced MCMC run, with
the first 2000 draws removed as burn-in. Harmonic mean analysis was based on 50000
posterior samples, following a 3000 iteration burn-in. For the power posterior method,
it was necessary to specify the temperature scheme and a pilot analysis (not counted
in the computation cost) was used to choose 20 partitions on the unit interval. The
MCMC sampler was run for 2650 iterations for each temperature in the descending
series, omitting the first 650 as burn-in, finishing with 2650 samples at t = 0 (the
prior).

Each procedure was repeated 50 times to provide an empirical Monte Carlo estimate
of the variation in each approach. We also vary the total running time in order to
investigate the effect of this on the accuracy of the marginal likelihood estimates, see
Table 1 in the supplementary material. For each analysis method we used the same
priors: Gamma(0.01,0.01) for the density factor w; Beta(1,1) for the initial probabilities
of infection π1 and π2 and Gamma(1,1) for the remaining parameters.

Figure 2 shows the variability of the eleven marginal likelihood estimators. Except
for the harmonic mean, all the methods appear to have produced consistent estimates
of the marginal likelihood. Chib’s method produced better estimates of the marginal
likelihood than the power posterior method, which is more computationally expen-
sive than the other methods and therefore uses a small number of MCMC samples at
each temperature, leading to large uncertainty. However as seen in Figure 2, the bridge
sampling and the importance sampling methods offer significant improvements in pre-
cision over the other methods. Moreover, increasing the number of samples N , led to a
decrease in the Monte Carlo standard errors of order O(

√
N), see Table 1 in the sup-

plementary material, indicating that the variances of the corresponding estimators are
finite.

The success of the importance sampling approach is not surprising since it explores
the posterior distribution of parameters more efficiently than the other methods due to
the independence of the samples drawn from the proposal density. More surprisingly
we were unable to use the bridge sampling technique to improve substantially on the
standard errors, which dropped from 0.0196 for ISmix to 0.0179 for BSmix. The bridge
sampling estimator attempts to combine information from the MCMC and importance
samples, however the optimal estimator is derived assuming that independent samples
from the posterior were available, which we approached by applying a thinning of 100
to the samples. With low levels of thinning (results shown in supplementary material
Figure 4) we found that bridge sampling actually increased the standard error of the
marginal likelihood estimate.

On the basis of this example, the lowest variance importance sampling estima-
tor was obtained using the proposal density ISmix – a mixture of the prior and the
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Figure 2: Top: Boxplots of the estimated log marginal likelihood for model M1 over 50
replicates for our importance sampling approach with the mixture proposal (ISmix),
Chib’s method (Chib), power posteriors method (PP) and harmonic mean (HM) (note
the different scales for the top and bottom plots). Bottom: Zoomed in boxplots of
the estimated log marginal likelihood for model M1 over 50 replicates for each of our
importance sampling approach (ISN1 , ISN2 , ISN3 , ISt4 , ISt6 , ISt8 , ISmix) and bridge
sampling (BSmix).

normal fitted to the posterior samples. Therefore, in the next section we use this
proposal density when estimating the log marginal likelihood via importance sam-
pling.
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5.5 Model comparison

In this Section, we apply the marginal likelihood estimation approaches to the problem
of Bayesian model choice. We focus on their ability to distinguish between biologically
motivated hypotheses concerning the dynamics of Pnc transmission. In particular we
compare their performance against the established technique of Reversible JumpMarkov
Chain Monte Carlo (RJMCMC) and then demonstrate that the importance sampling
approach can solve problems that are extremely challenging with RJMCMC. We show
that using our approach it is possible to answer the epidemiological important question
of how household size is related to transmission with extended discussion given in the
supplementary material.

Suppose that we wish to evaluate the evidence in favour of the community acquisition
rates being equal for adults and children, in the hope of developing a more parsimonious
model. We call the model described in Section 5.1, in which children have community
acquisition rate k1 and adults have rate k2, model M1. The nested model, in which k1 =
k2 is called M2. We generated realistic simulated datasets from each of these models
and then used importance sampling, bridge sampling, Chib’s method, power posteriors,
the harmonic mean and reversible jump MCMC to estimate the Bayes factor in favour of
M1, denoted by B12. As before, we used approximately the same computational effort
for each of these approaches. For M1 we assumed k1 = 0.012 and k2 = 0.004, whilst for
M2 we assumed k1 = k2 = 0.008.

Details of the RJMCMC algorithm for selecting between models M1 and M2 are
given in the supplementary material. We ran the RJMCMC chain with a 30000 burn-in
followed by 76000 samples which ensured that similar computational effort was given
to RJMCMC as to the other methods. When the evidence is strongly in favour of one
model, the RJMCMC will not move between models very often and can provide poor
estimates of the Bayes factor. A variant of the method, called RJMCMC corrected
(RJcor), can tackle this issue by assigning higher prior probability to the model that
is visited less often. This probability is estimated as π(Mm) = 1 − π̂(Mm | x), where
π̂(Mm | x) is obtained from a pilot run of RJMCMC with initial π(Mm) = 0.5, for
m = 1, 2. For RJcor we did 30000 pilot iterations and then another 76000 iterations, of
which 30000 were discarded as a burn in.

Figure 3 provides a graphical representation of the variability in log(B12) over 50
repeats of each Monte Carlo approach. The plot highlights that the estimators based
on importance sampling and bridge sampling were the most accurate in both scenarios.
The left panel of Figure 3 gives results for data generated from M1. Importance sam-
pling, bridge sampling, Chib and RJ methods lead to similar estimates, whereas power
posterior and harmonic mean overestimated the log Bayes factor. Moreover, RJcor pro-
duced slightly more accurate estimates of the log Bayes factor than vanilla RJMCMC.
All methods selected the correct model, with largest variation from the harmonic mean
estimator. In the right panel of Figure 3, the results use data generated from model
M2. Due to the huge variance in log(B12), the harmonic mean sometimes favoured the
wrong model. Although the remaining methods correctly identified the true model, the
importance and bridge sampling methods again produced the most precise estimates of
the Bayes factor; the standard errors provided by the two methods are almost identical.
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Figure 3: Variability of the log Bayes factor estimates based on 50 Monte Carlo repeats
for the importance sampling method with mixture proposals (ISmix), bridge sampling
method with mixture proposals (BSmix), Chib’s method (Chib), reversible jump MCMC
(RJ), corrected reversible jump MCMC (RJcor), power posteriors (PP) and harmonic
mean (HM) methods (note the different scales for the top and bottom plots).

Figure 4 demonstrates the evolution of the log Bayes factor in favour of M1 as a
function of computation time using data generated from M1. The importance sampling
estimator (in blue) converges much more rapidly than the other estimators, showing
very tight credible intervals. Chib’s method (in green) and corrected RJMCMC (in red)
appear to converge to the same value, but more slowly and have wider CIs. The power
posterior method gradually approaches the consensus estimate, requiring significantly
more samples to stabilize. The harmonic mean estimator was heavily unstable and also
provided much wider credible intervals than the other methods.

In the supplementary material (Touloupou et al., 2017), further model comparison
questions are considered and the strength of the importance sampling technique for an-
swering these questions is further demonstrated. In particular, we consider heterogeneity
in household transmission rates, density-dependence in within-household transmission
and the amount of missing data.

6 Conclusions

In this paper we have introduced a simple three stage algorithm for efficiently estimat-
ing the marginal likelihood. The key components are an MCMC algorithm for obtaining
samples from the posterior distribution, π(θ|x), an approximating distribution q(θ) to
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Figure 4: Evolution of log Bayes factor estimates in favour of model M1 as a func-
tion of computation time. The solid lines corresponds to the median and the shaded
areas give the 95% credible intervals, estimated from 50 Monte Carlo replicates. Yellow
represents the harmonic mean method, grey is for the power posterior, red and green
correspond to RJMCMC corrected and Chib’s methods respectively and blue represents
the importance sampling approach with the mixture proposals.

sample from and an effective estimate of the likelihood π(x|θ). The first observation is
whilst an MCMC algorithm will often be relatively straightforward to construct, alter-
native methods for sampling from the posterior distribution could be equally considered.
Moreover, it is not important if a sample from an approximate posterior distribution
(for example, Monte Carlo within Metropolis; O’Neill et al., 2000) is used since all
that is required for computation of the marginal likelihood is to be able to make a
reasonable choice of q(·). The key limitation to using this approach is effective estima-
tion of the likelihood π(x|θ) in cases where it is not analytically tractable. In Section
5 of this paper the temporal nature of the data allowed the FFBS algorithm to be
utilised to compute π(x|θ) and more generally filtering methods are a promising avenue
of research to explore in the estimation of π(x|θ). The importance sampling and the
associated estimation of the likelihood is trivially parallelisable which can be utilised to
speed up implementation. Finally, in cases where the likelihood can easily be computed
the algorithm becomes a simple add-on to MCMC to compute the marginal likelihood.
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Supplementary Material

Supplementary material: Efficient model comparison techniques for models requiring

large scale data augmentation (DOI: 10.1214/17-BA1057SUPP; .pdf).
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