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Abstract: Selecting between competing statistical models is a challeng-
ing problem especially when the competing models are non-nested. In this
paper we offer a simple solution by devising an algorithm which combines
MCMC and importance sampling to obtain computationally efficient esti-
mates of the marginal likelihood which can then be used to compare the
models. The algorithm is successfully applied to a longitudinal epidemic
data set, where calculating the marginal likelihood is made more challeng-
ing by the presence of large amounts of missing data. In this context, our
importance sampling approach is shown to outperform existing methods
for computing the marginal likelihood.
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1. Introduction

The central pillar of Bayesian statistics is Bayes’ Theorem. That is, given a pa-
rameteric modelM with parameters θ = (θ1, . . . , θd) and data x = (x1, x2, . . . , xn),
the joint distribution of (θ,x) satisfies

π(θ|x)π(x) = π(x|θ)π(θ). (1)

The four terms in (1) are the posterior distribution π(θ|x), the marginal like-
lihood or evidence π(x), the likelihood π(x|θ) and the prior distribution π(θ).
The terms on the right hand side of (1) are usually easier to derive than those
on the left hand side. The statistician has considerable control over the prior
distribution and this can be chosen pragmatically to reflect prior beliefs and to
be mathematically tractable. For many statistical problems the likelihood can
easily be derived. However, the quantity of primary interest is usually the pos-
terior distribution. Rearranging (1) it is straightforward to obtain an expression
for π(θ|x) so long as the marginal likelihood can be computed. This involves
computing

π(x) =

∫
π(x|θ)π(θ)dθ, (2)
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which is only possible analytically for a relatively small set of simple models.
A key solution to being unable to obtain an analytical expression for the

posterior distribution is to obtain samples from the posterior distribution using
Markov chain Monte Carlo (MCMC; Metropolis et al., 1953; Hastings, 1970). A
major strength of MCMC is that it circumvents the need to compute π(x) and
this has led to its widespread use in Bayesian statistics over the last 25 years or
so. However, Bayesian model choice typically requires the computation of Bayes
Factors (Kass and Raftery, 1995) or posterior model probabilities, which are
both functions of the marginal likelihoods for the competing models. In Chib
(1995) a simple rewriting of (1) was exploited to obtain estimates of the marginal
likelihood using output from a Gibbs sampler. This has been extended in Chib
and Jeliazkov (2001) and Chen (2005) to be used with the general Metropolis-
Hastings algorithm. Importance sampling approaches to estimating the marginal
likelihood have also been suggested (Gelfand and Dey, 1994), along with gen-
eralisations such as bridge sampling (Meng and Wong, 1996), which ‘bridges’
information from posterior and importance samples. More recently approaches
have exploited the ‘thermodynamic integral’ such as power posterior methods
Friel and Pettitt (2008). Alternative methods such as Sequential Monte Carlo
(e.g. Zhou et al., 2015) and nested sampling (Skilling, 2004) do not require any
MCMC: computation of the marginal likelihood and samples from the poste-
rior distribution are produced simultaneously. A potential drawback for many
of the above approaches to marginal likelihood estimation is that it may not be
obvious how to apply them efficiently to models incorporating large amounts of
missing data.

It should be noted that there are model comparison techniques such as re-
versible jump (RJ)MCMC (Green, 1995) which can used to compare models
without the need to compute the marginal likelihood. RJMCMC works well for
nested models where it is straightforward to define a good transition rule for
models with different parameters. However, in the case where we have large
amounts of missing data it is often necessary to use some form of data augmen-
tation technique, where the missing information is inferred alongside the other
parameters of the model. Using RJMCMC becomes much harder in these cases
since the dimension of the parameter space (including the augmented data) be-
comes large. This is exacerbated further when the missing information between
the competing models has a different structure. In this latter case the use of in-
termediary (bridging) models (Karagiannis and Andrieu, 2013) to move between
the models of interest is a possibility.

The aim of the current paper is to demonstrate a straightforward mechanism
for estimating the marginal likelihood of models with large amounts of missing
data. The idea combines MCMC and importance sampling in a natural and
semi-automatic manner to produce marginal likelihood estimates. The details
of the algorithm developed are given Section 2. In Section 3 we consider a linear
mixed model example. This enables us to demonstrate two important facets of
the approach. Firstly, for the special case of the linear model we can compare our
estimates of the marginal likelihood with exact computations which show very
good agreement. Secondly, we show that making the distinction between model
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parameters and augmented data (random effects terms) assists tremendously
in devising an efficient estimator of the marginal likelihood. In Section 4 we
consider final outcome household epidemic data where in the special case of the
Reed-Frost model exact, but expensive, computation of the marginal likelihood
is possible for comparison purposes. In Section 5 we apply the methodology to an
epidemic example, for the transmission of Streptococcus pneumoniae (Melegaro
et al., 2004) comparing our algorithm to existing methods for computing the
marginal likelihood demonstrating its simplicity and effectiveness in the presence
of missing data. Finally in Section 6 we briefly discuss extensions and limitations
of the algorithm.

2. Algorithm

Our starting point in the estimation of π(x) is to note that we can rewrite (2)
as

π(x) =

∫
θ

π(x|θ)
π(θ)

q(θ)
q(θ) dθ, (3)

where q(θ) denotes a d-dimensional probability density function. We assume

that if π(θ) > 0 then q(θ) > 0. Then an unbiased estimator, P̂q of π(x) is
obtained by sampling θ1,θ2, . . . ,θN from q(θ) and setting

P̂q =
1

N

N∑
i=1

π(x|θi)
π(θi)

q(θi)
. (4)

Thus P̂q is an importance sampled (see, for example, Ripley, 1987) estimate
of π(x), and the effectiveness of the estimator given by (4) depends upon the
variability of π(x|θ)π(θ)/q(θ).

The remainder of the paper and this Section, in particular, is focussed on how
we can effectively exploit (4) in the estimation of π(x). The first observation
is that the optimal choice of q(θ) is π(θ|x), the posterior density but if we
knew this, then π(x) would also be known. A simple solution is to use output
from an MCMC algorithm to inform the proposal distribution (Clyde et al.,
2007). For most statistical models the likelihood times the prior is unimodal
for sufficiently large n. In these circumstances, the posterior distribution of θ is
almost always approximately Gaussian with mean θ̂, the posterior mode, and
covariance matrix Σ = −I(θ̂)−1, where I(θ) denotes the Fisher information
evaluated at θ. That is, we have a central limit theorem type behaviour similar
to that observed for maximum likelihood estimators as n → ∞. This central
limit theorem approximation is implicitly behind the Laplace approximations
of integrals used in Tierney and Kadane (1986), (2.2) and Gelfand and Dey
(1994), (8). This underpins the simple suggestion in Clyde et al. (2007) of using a
multivariate t-distribution as an importance sampling distribution with location
and scale parameters estimated from MCMC output. Alternatively, we can use
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a “defense mixture” (Hesterberg, 1995),

qD(θ) = pφ(θ;µ,Σ) + (1− p)π(θ). (5)

where φ(·;µ,Σ) is the probability density function of a multivariate Gaussian
distribution with mean µ and covariance matrix Σ, estimated from the MCMC
output, and p is a mixing proportion. This proposal ensures that the ratio
of the prior density to the proposal density is bounded above by 1/(1 − p)
with p typically chosen to be 0.95. We found that a t-distribution proposal was
preferable in Sections 3 and 4, whereas the defense mixture proposal was the
preferred choice in Section 5.

We are now in position to outline the three step algorithmic procedure, which
is implemented in the paper followed by highlighting the scope and limitation
of the approach. The steps are as follows:

1. Obtain a sample θ1,θ2, . . . ,θK from the (approximate) posterior distri-
bution, π(θ|x). Throughout this paper, and in practice, this will generally
be achieved using MCMC with K chosen such that the sample is repre-
sentative of the posterior distribution. However, any alternative method
for obtaining an approximate sample from the posterior distribution could
be used.

2. Use the sample θ1,θ2, . . . ,θK to derive a parametric approximation of the
posterior distribution and let q(·) denote the corresponding probability
density function. For example, choosing q(·) either to be a multivariate
t-distribution or a “defense mixture” will usually work well.

3. Sample θ̃1, θ̃2, . . . , θ̃N from q(·). (The tilde notation is used to distinguish
the sample obtained from q(·) from the sample used to estimate q(·).) For
each i = 1, 2, . . . , N , compute π(x|θ̃i) and estimate π(x) using (4).

In situations where π(x|θ) is analytically available, the construction of an MCMC
algorithm to sample from π(θ|x) will be straightforward and implementation of
the algorithm will be trivial. Then the procedure becomes a simple and fast ap-
pendage to a standard MCMC algorithm. However, assuming an independent
and identically distributed sample from q(·), the variance of the importance
sampling estimator given in (4) is given by

Var(P̂q) = N−1
∫ (

π(x|θ)
π(θ)

q(θ)
− π(x)

)2

q(θ) dθ

= N−1π(x)2
∫ (

π(θ|x)

q(θ)
− 1

)2

q(θ) dθ,

which again highlights the importance of the proposal q(θ) resembling the poste-
rior π(θ|x) as closely as possible. As the dimension of θ increases the variance of
the estimator will typically grow due to the curse of dimensionality (see Doucet
and Johansen, 2011, page 671 for an explanation) and this is the main potential
limitation. The examples in Section 5 show that the algorithm can be effectively
used for moderate numbers of parameters with d = 11. In passing we remark
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that a dependent sample from q(·) in Step 3 of the algorithm can be exploited
to reduce the variance of the estimator. A prime example is the defense mix-
ture proposal where pN and (1− p)N samples are drawn from the multivariate
Gaussian distribution and the prior, respectively.

The motivation for the work are in circumstances where π(x|θi) is not readily
available, see Sections 3 and 5, and further work is required to implement the
algorithm. When π(x|θ) is not available, it is often possible, with the addition
of augmented data y, to obtain an analytical expression for π(x,y|θ). This
can then be utilised within an MCMC algorithm to obtain samples from the
joint posterior π(θ,y|x). Devising an importance sampling proposal distribution
q(θ,y) approximating π(θ,y|x) will not be practical if y is high-dimensional,
for example, the dimension of y is equal to or greater to n, the dimension of x.
See, for example, Section 3 for limitations of this approach. The solution that we
propose is to use the marginal MCMC output from π(θ|x) to inform the proposal
distribution q(θ) in the importance sampling above, and then to separately
consider the computation of π(x|θ), which will be largely problem specific. In
the linear mixed model example in Section 3, the distribution of yi (random
effect term) is readily available given θ and xi, and hence we can sample the
random effects y from their full conditional distributions. This approach extends
to the epidemic model in Section 5, where y represents the unobserved infectious
status of individuals with respect to Streptococcus pneumoniae carriage and the
Forward Filtering Backwards Sampling (FFBS) algorithm (Carter and Kohn,
1994) can be used to calculate π(y|x,θ), and hence π(x|θ). In future work we
will show how particle filtering, (Gordon et al., 1993), can be applied to estimate
π(x|θ) extending the scope of the algorithm with particular reference to Poisson
regression models (Zeger, 1988). The estimation of π(x|θ) can be potentially
computationally costly and thus the overall cost of the algorithm needs to be
considered. However, the computation of the {π(x|θ̃i)}’s can, in contrast to
the MCMC runs, be undertaken in parallel, which can ease the computational
burden.

Our approach can be used to estimate Bayes’ Factors in objective model selec-
tion where for two competing models, common model parameters are assigned
improper, non-informative priors. Consider two competing modelsM1 andM2

with parameters θ1 = (φ,ω1) and θ2 = (φ,ω2), respectively, and let φ denote
parameters common to both models. Let Φ ⊆ Rd denote the sample space for
φ. Suppose that a common prior π0(φ) is chosen for φ in both models and that
the prior for Mk (k = 1, 2) factorises as πk(θk) = π0(φ)πk1(ωk), where πk1(·)
is assumed to be a proper probability density. We can then choose φ0 ∈ Φ as a
reference point and set π̃0(φ0) = 1 and for all φ ∈ Φ, set π̃0(φ) = π0(φ)/π0(φ0).
Let

πk(x) =

∫ ∫
πk(x|φ,ωk)π0(φ)πk1(ωk) dφ dωk, (6)

and

π̃k(x) =

∫ ∫
πk(x|φ,ωk)π̃0(φ)πk1(ωk) dφ dωk. (7)
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Then letting B12 = π1(x)/π2(x) denote the Bayes’ Factor between models 1
and 2, it follows from (6) and (7) that

B12 =
π1(x)

π2(x)
=
π̃1(x)

π̃2(x)
. (8)

Therefore it suffices to estimate π̃k(x) (k = 1, 2) in order to estimate B12. The
estimation of π̃k(x) can proceed along the same lines as πk(x) in (4) by selecting
a proper proposal density qk(·) and using samples (φk1 ,ω

k
1), . . . , (φkN ,ω

k
N ) from

qk(·) to estimate π̃k(x) by

P̃ kq =
1

N

N∑
i=1

πk(x|φki ,ωki )
π̃0(φki )πk1(ωki )

qk(φki ,ω
k
i )

. (9)

In this case the “defense mixture” proposal is inappropriate but a multivariate
t-distribution can be used as an effective proposal distribution.

In our approach each model is required to be analysed separately and the
computational cost increases approximately linearly in the number of models to
be compared. Therefore this approach is not competitive for comparing large
numbers of nested models, for example, the inclusion or exclusion of p covariates
in a generalised linear model, a situation where reversible jump MCMC (Green,
1995) can be effectively applied. Our approach is more suited to comparing a
small number of competing models which potentially have rather different dy-
namics such as integer valued autoregressive (Neal and Subba Rao, 2007) and
Poisson regression (Zeger, 1988) models for integer valued time series, an exam-
ple which we will present in future work. The approach is particularly suited to
situations which allow the posterior distribution of the parameters to be approx-
imately Gaussian, assisting in the construction q(·), but this assumption can be
relaxed. Furthermore, the appropriateness of a Gaussian, or t-distribution ap-
proximation of the posterior can easily be assessed from the MCMC output.

3. Linear mixed model

We illustrate our methodology on the linear mixed model. In particular we may
wish to ask the model choice question of whether it is necessary to include a
random effect in the model or not. This question would be extremely challenging
to address using reversible jump MCMC because it would require an efficient
proposal distribution for the complete set of random effects when jumping be-
tween models. However it is straightforward to fit both models using MCMC
due to the availability of a Gibbs sampler. The full conditional distribution of
the random effects then unlocks an efficient importance sampling algorithm for
the calculation of the marginal likelihood.

The simplest linear mixed model takes the following form. Let the data be
divided into m units or clusters, and assume that

xij = zTijβ + δi + εij , (10)
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for i = 1, . . . ,m and j = 1, . . . , ni, where εij ∼ N(0, σ2) are independent and
identically distributed errors. We assume that the random effects satisfy δi|φ ∼
N(0, φ2) and are independent conditional on the standard deviation parameter
φ. The vector of unknown parameters for the model is given by θ = (β, σ, δ, φ).
Let Z denote the design matrix of the fixed effects, with rows zTij and let W be
the design matrix for the random effects, so that x = Zβ+Wδ+ε. For a review
of Bayesian approaches to generalized linear mixed models, see for example Fong
et al. (2010).

3.1. Simulation study

To illustrate the application of our importance sampling technique we performed
a simulation study where the true model is known. We simulated data form = 50
clusters, each containing ni = 3 observations, giving n = 150 in total. We gener-
ated 3 predictor variables for each cluster by drawing m values from a standard
normal distribution. We fixed our true parameters to be βT = (10,−20, 30),
σ = 1 and φ = 2. For every cluster we assumed the same predictors and drew a
random effect δi from δi|φ ∼ N(0, φ2). Finally, the observed data x = [xij ] were
drawn from equation (10).

3.2. Model 1 – with random effects

For the fixed effects we chose Zellner’s g-prior (Smith and Kohn, 1996), namely
β|σ ∼ N(0, gσ2(ZTZ)−1). In our application we chose g = n, known as the
unit information prior (Kohn et al., 2001). For the variance parameters we used
inverse gamma priors: σ2 ∼ IG(aσ, bσ) and φ2 ∼ IG(aφ, bφ), setting these pa-
rameters equal to 1 in our implementation. These conjugate priors allow a Gibbs
sampling algorithm to sample from the posterior distribution. The full condi-
tional distributions are given by,

β, σ2|x, δ ∼ NIG(m∗,V∗, a∗, b∗) (11)

m∗ =
g

1 + g
(ZTZ)−1ZT (x−Wδ)

V∗ =
g

1 + g
(ZTZ)−1

a∗ = aσ +
n

2
(12)

b∗ = bσ +
1

2
(x−Wδ)T

(
In −

g

1 + g
Z(ZTZ)−1ZT

)
(x−Wδ) (13)

φ|δ ∼ IG(aφ + m
2 , bφ + 1

2δ
T δ) (14)

δi|x,β, σ, φ ∼ N

 1

κi

ni∑
j=1

xij − zTijβ, κ
−1
i

 (15)

κi = 1
φ2 + ni

σ2 .
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After a burn-in of 1000 iterations, we drew 10000 samples from the MCMC. To
demonstrate the increased efficiency provided by making use of the approach
to handle missing data described in Section 2, we considered two importance
sampling estimators.

3.2.1. Full posterior importance sampling

In the full posterior importance sampler, we estimate the mean and covariance
matrix for the full parameter vector θ including the random effects, giving m+5
parameters in total. We then used these as the centre and scale matrix for
multivariate t-distributed proposal distribution with 5 degrees of freedom, with
density q1(θ). We drew N = 1000 samples from this proposal, denoting them

by {θi}Ni=1. The importance sampling estimator is then P̂q1 given in (4).

3.2.2. Marginal posterior importance sampling

In the second importance sampling approach we make use of missing data tech-
nique described in Section 2. We calculate the marginal mean and covariance
matrix for the (restricted) parameter vector ψ = (β, σ, φ). Again we use these
as the centre and scale matrix for a multivariate t-distributed proposal with 5
degrees of freedom, but this time it has just 5 dimensions. For each ψi that is
drawn from the proposal q2(ψ), we sample the random effects δi from their full
conditional distribution in Equation (15). The importance proposal is therefore
given by q2(ψ)π(δ|x,ψ).

Note that in both of these estimators we have chosen to parameterise our
proposal distribution in terms of the standard deviations (σ and φ) rather than
the variances in order to lighten the tails. However since the priors are written
in terms of the variance parameters we must multiply the proposal densities
q1(θ) and q2(ψ) by the Jacobian σφ/4 to obtain the correct marginal likelihood
estimator.

3.3. Model 0 – without random effects

The model with no random effects is just a linear model, given by xij = zTijβ+εij .

We assume the same conjugate priors for β and σ2 described in Section 3.2 and
in this case the marginal likelihood may be calculated analytically, namely,

π(x) =
baσσ Γ(a∗)

(2π)n/2Γ(aσ)
(b∗)−a

∗
,

where a∗ and b∗ are given by Equations (12) and (13) evaluated at δ = 0.
For comparison purposes, we also use our importance sampling approach based
on 10000 samples drawn directly from the joint posterior for β and σ. The
importance proposal q was again based on a t-distribution with 5 degrees of
freedom.
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3.4. Results

-425.5 -425.4 -425.3 -425.2 -425.1 -425.0

Log marginal likelihood

Full posterior IS

for lmm

Marginal posterior IS

for lmm

Linear model IS

Fig 1. Variation of the log marginal likelihood estimates for the linear model and linear
mixed model (lmm) over 50 replicates. For the lmm, in the full posterior approach the whole
parameter vector (including random effects) was approximated in the importance proposal; in
the marginal posterior approach the random effects were left out, and drawn from their full
conditional distribution. A dashed vertical line indicates the true log marginal likelihood for
the linear model.

Figure 1 shows the variation in 50 Monte Carlo replicates of each importance
sampling estimator, based on 1000 samples. The importance sampling estimates
for the linear model fall close to the true log marginal likelihood value, indicated
by a dashed vertical line. For the linear mixed model treating the random effects
as missing data and drawing them from their full conditional distribution greatly
reduces the variance of the importance sampling estimator. The Monte Carlo
standard errors for the linear model and linear mixed model with missing data
were 0.0123 and 0.0171, compared with 0.106 for the linear mixed model with
an importance proposal for the full parameter vector.

When we increase the number of clusters m from 50 to 500 (Figure 2 of
the supplementary material) the Monte Carlo standard error for the marginal
posterior approach was 0.015, showing no increase due to the increase in missing
data. For comparison, the Monte Carlo standard error for the full parameter
importance sampling approach increased to 0.825 for m = 500.

The precision of the marginal likelihood estimator is important when it comes
to estimating the Bayes factor. With m = 50 clusters the 50 Monte Carlo
estimates of Bayes factor in favour of the linear model (from the missing data
approach) fall between 1.279 and 1.359 for the marginal posterior importance
sampling estimator. When the full posterior importance sampling estimator is
used the 50 Bayes factors fall between 1.032 and 1.664, and it’s not hard to
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envisage situations in which this loss of precision could lead to an incorrect
conclusion.

4. Final outcome epidemic data

In this Section, we look at applying the methodology developed in Section 2 to
final outcome household epidemic data. Specifically, we assume that the data
consist of the number of individuals infected during the course of an epidemic
in a number of households of various sizes. We follow Addy et al. (1991) and
Neal and Kypraios (2015) in assuming that the epidemics in each of the house-
holds are independent with each member of a household having probability pG
of being infected globally from the community at large and the within household
epidemic spread emanating from the individuals infected globally. Within each
household the disease dynamics are assumed to follow a homogeneously mix-
ing, generalised stochastic epidemic model, where infectious individuals have
independent and identically distributed infectious periods according to an arbi-
trary, but specified, non-negative probability distribution Q with E[Q] = 1 and
during their infectious period make contact with a given susceptible in their
household at the points of a homogeneous Poisson point process with rate λL.
The special case where Q ≡ 1 has the same final outcomes in terms of those
infected as a household Reed-Frost model within household infection probabil-
ity pL = 1 − exp(−λL). Throughout we assign an Exp(1) prior to λL which
corresponds to a U(0, 1) prior on pL and also a U(0, 1) prior on pG.

For the household Reed-Frost epidemic it is trivial to adapt the approach
of Neal and Kypraios (2015), Section 3.3 to compute the marginal likelihood
exactly. Details of how this can be done are given in the supplementary mate-
rial. Therefore we are able to compare our estimation of the marginal likelihood
with the exact marginal likelihood. The exact computation of the marginal like-
lihood grows exponentially in the total number of households whilst the MCMC
algorithm for estimating the parameters and the algorithm for estimating the
marginal likelihood have essentially constant computational cost for a given
maximum household size. Therefore the exact computation of the marginal like-
lihood is only practical for data containing a small number of households and
we apply it to the influenza data sets from Seattle, reported in Fox and Hall
(1980), which contain approximately 90 households each.

Exact computation of the marginal likelihood is not possible for general Q.
Therefore we use our approach to compare three different choices of infectious
period Q ≡ 1, Q ∼ Gamma(2, 2) and Q ∼ Exp(1) to study which infectious
period distribution is most applicable for a given epidemic data set. This mimics
analysis carried out in Addy et al. (1991) in a maximum likelihood framework
where two infectious periods, a constant and a gamma with shape parameter 2,
were compared for a combined data set of two influenza outbreaks in Tecumseh,
Michigan, see Monto et al. (1985).

Let x denote the observed epidemic data. The recursive equations given
in Ball et al. (1997), (3.12), can be used to compute Phk (h = 1, 2, . . . ; k =
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0, 1, . . . , h), the probability of observing k individuals out of h being infected in
a household of size h. Therefore it is straightforward to compute π(x|λL, pG) or
π(x|pL, pG) for the Reed-Frost model. Consequently, it is trivial to construct a
random walk Metropolis algorithm to sample from π(λL, pG|x) (or π(pL, pG|x)
for the Reed-Frost model) and to estimate the marginal likelihood using samples
from a proposal density q(λL, pG), which is a multivariate t distribution with 10
degrees of freedom and mean and covariance matrix obtained from the MCMC
samples.

We applied the algorithm for estimating the marginal likelihood to the two
Seattle data sets and the Tecumseh data set for each of the three infectious pe-
riod distributions. In all cases we ran the MCMC algorithm for 11000 iterations
discarding the first 1000 iterations as burn-in and then used 1000 samples to
estimate the marginal likelihood. For the Seattle influenza A data set with max-
imum household size of 3 it took approximately 2.4 seconds to compute each
marginal likelihood in R on a desktop PC with Intel i5 processor. For the Seat-
tle influenza B data set and the Tecumseh data set with maximum household
size of 5 it took approximately 5 seconds to compute each marginal likelihood.
The log marginal likelihoods are given in Table 1, they show that is little in-
formation in the data to choose between different Q, agreeing with findings in
Addy et al. (1991) and Ball et al. (1997). Interestingly Q ∼ Exp(1) is preferred
for the Seattle influenza A and Tecumseh data sets, whereas Q ≡ 1 is Seattle
influenza B data set. For the two Seattle data sets we also computed the exact
log marginal likelihoods, -15.08 and -24.98, for the household Reed-Frost model
applied to the Seattle influenza A and influenza B data sets, respectively. For
the Seattle data sets we repeated the estimation of the log marginal likelihood
100 times for the Reed-Frost model to obtain Monte Carlo standard errors for
the estimated log marginal likelihoods of 0.0062 and 0.0073 for the Seattle in-
fluenza A and Seattle influenza B data sets, respectively, demonstrating good
agreement between the estimated and exact log marginal likelihoods. The calcu-
lations of the exact marginal likelihood took approximately 0.5 and 14 seconds
for the Seattle influenza A and influenza B data sets, respectively. The code for
computing the exact marginal likelihood could not be applied to the combined
Tecumseh data set, or even the separate Tecumseh data sets (see, for example
Clancy and O’Neill, 2007) since enumerating over all possible augmented data
states exceeded R’s memory allocation. This problem could be circumvented to
some extent using sufficient statistics as in Neal and Kypraios (2015) but the
current approach offers a simple and fast alternative.

Data Set Q ∼ Exp(1) Q ∼ Gamma(2, 2) Q ≡ 1
Seattle A -14.69 -14.86 -15.08
Seattle B -25.27 -25.11 -24.99
Tecumseh -45.58 -45.59 -45.87

Table 1. Estimated log marginal likelihood for the three influenza data sets
using the three choices of infectious period distribution; Q ∼ Exp(1),

Q ∼ Gamma(2, 2) and Q ≡ 1.
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5. Longitudinal epidemic model

5.1. Introduction

In this Section, we explore the application of the methodology developed in Sec-
tion 2 to a scenario where π(x|θ) is not readily available, and data augmentation
is required both with in the MCMC algorithm and estimation of the marginal
likelihood. The example used is based on a longitudinal household study of
preschool children under 3 years old and all household members was conducted
in the United Kingdom from October 2001 to July 2002 (Hussain et al., 2005).
The size of the families varied from 2 to 7, although in most there were 3 or
4 members. All family members were examined for Streptococcus pneumoniae
carriage (Pnc) using nasopharyngeal swabs once every 4 weeks over a 10-month
period. The carriage status of each individual was recorded at each occasion as
1, if a carrier or 0, if a non-carrier.

Following Melegaro et al. (2004), we consider an Susceptible-Infected-Susceptible
(SIS) epidemic model for the transmission of Pnc within a household. At any
given time, an individual is assumed to be in either the susceptible non-carrier
state 0, or the infectious carrier state 1. The population is divided into two
age groups, children under 5 years old and everyone else greater than 5 years
(whom for brevity we refer to as ‘adults’), denoted by i = 1, 2, respectively.
Let I1(t) and I2(t) denote the numbers of carrier children and carrier adults in
the household at time t. The transition between state 0 and 1 is referred to as
an infection and the reverse transition is referred to as clearance. The transi-
tion probabilities between states in a short time interval δt are defined for an
individual in the age group i:

P (Infection in (t, t+ δt])=1−exp

{
−
(
ki +

β1i I1(t) + β2i I2(t)

(z − 1)w

)
δt

}
(16)

P (Clearance in (t, t+ δt])=1−exp(−µi · δt), (17)

where µi and ki are the clearance and the community acquisition rates respec-
tively for age group i and z is the household size. The rate βij is the transmission
rate from an infected individual in age group i to an uninfected individual in age
group j. The term (z− 1)w in (16) represents a density correction factor, where
w corresponds to the level of density dependence and (z − 1) is the number of
other family members in a household size z. For example, w = 1 represents fre-
quency dependent transmission, where the average number of contacts is equal
for each individual in the population. Finally, the probability of infection at the
initial swab is assumed to be πi for age group i. We refer to this model as M1.

Given the dependence of the carriage status of all individuals in a household,
the within household carriage dynamics in a household of size z can be modelled
as a discrete time Markov chain with 2z states (all possible binary vectors of
infectious statuses of the z individuals). The presence of unobserved events, that
may have occurred in between swabbing intervals, has been discussed previously
(Auranen et al., 2000), and must be considered in setting up the model. The
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approach adopted in this paper to overcome this issue is to use Bayesian data
augmentation methods. Model fitting is performed within a Bayesian frame-
work using an MCMC algorithm, imputing the unobserved carriage states in
each household. Let Oj ⊆ {1, 2, . . . , T} denote the set of prescheduled observa-
tion times of household j = 1, 2, . . . , J , and let Uj = {1, 2, . . . , T} \ Oj denote
the unobserved times. Let xj,t be the binary vector of carriage states for indi-
viduals in household j at observation time t. The observed longitudinal data
X = [xj,t]t∈Oj ;j=1,...,J consists of the household carriage statuses xj,t at the
observation times. Similarly let yj,t be the corresponding latent carriage status
of household j at time t ∈ Uj , and form the corresponding missing data matrix
Y = [yj,t]t∈Uj ;j=1,...,J . Let θ denote the vector of model parameters, including
the rates of acquiring and clearing carriage, the density correction w and the
initial probabilities of carriage.

The remainder of this Section is structured as follows. In Sections 5.2 and
5.3, we introduce the MCMC algorithm and importance sampling algorithms,
respectively, required to implement our approach. In particular, we introduce
the Forward Filtering Backward Sampling algorithm (Carter and Kohn, 1994)
to assist with dealing with the augmented data y. In Sections 5.4 and 5.5 sim-
ulated data (where the true model is known) are used to illustrate the im-
plementation, performance and applicability of the proposed method and its
comparative performance against a range of alternatives. We demonstrate that
for a fixed computational cost our approach performs at least as well as existing
methods, and with the exception of bridge sampling (Meng and Wong, 1996),
performs considerably better.

5.2. Markov chain Monte Carlo algorithm

In the Bayesian approach, the missing data is represented as a nuisance param-
eter and inferred from the observed data like any other parameter. The joint
posterior density of the latent carriage states y, and the model parameters θ
can be factorized as:

π(y,θ | x) ∝ P (y,x | θ)π(θ)

= π(θ)

J∏
j=1

T∏
t=1

P (zj,t|zj,t−1,θ),

where zj,t equals xj,t if t ∈ Oj ; yj,t if t ∈ Uj and ∅ if t = 0. This factorization
is based on the assumption that conditionally on the model parameters, the
carriage process is assumed to be independent across households.

In order to simulate from the posterior distribution, we construct an MCMC
algorithm that employs both Gibbs and Metropolis-Hastings updates. The main
emphasis is on sampling the unobserved carriage process y, which we do us-
ing a Gibbs step via the Forward Filtering Backward Sampling (FFBS) algo-
rithm (Carter and Kohn, 1994). In the first part of this algorithm, recursive
filtering equations (Anderson and Moore, 1979) are used to calculate P (yj,t |
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zj,t+1,xj,Oj∩{1:t},θ) for each t ∈ Uj working forwards in time. The second part
then works backwards through time, simulating yj,t from these conditionals,
starting with t = max(Uj) and ending with t = min(Uj). The model parameters
π1 and π2 are updated using Gibbs updates and the remaining parameters are
updated jointly using an adaptive Metropolis-Hastings random walk proposal
(Roberts and Rosenthal, 2009).

5.3. Marginal likelihood estimation via importance sampling

The availability of the full conditional distribution of the missing data P (y|x,θ)
from the FFBS algorithm allows the missing data component y to be updated
using a Gibb’s step in the MCMC algorithm. This full conditional can be ex-
ploited further in the estimation of the marginal likelihood. We require P (x|θ) in
order to form the importance sampling estimator in (4). Using Bayes’ Theorem
we can rewrite this as

P (x|θ) =
P (x|y,θ)P (y|θ)

P (y|x,θ)
=
P (x,y|θ)

P (y|x,θ)
, (18)

for any y such that P (y|x,θ) > 0. Therefore evaluation of P (x|θ) at the point
θ can be done by evaluating the right-hand-side of (18) with any suitable y. A
suitable y is guaranteed if it is sampled from the full conditional distribution
y|(x,θ).

Our approach proceeds as follows. In step 1 we use MCMC to obtain samples
from the joint posterior of θ and y. In step 2 we fit a multivariate normal distri-
bution to the posterior samples for θ only, and use it to construct a normalised
proposal density q(θ). In step 3, we obtain N samples from q(θ) and for each
sample θi we obtain a corresponding sample for the missing data yi using the
Forward Filtering Backward Sampling algorithm. We then use these samples to
calculate the importance sampling estimator of the marginal likelihood:

P̂q(x) =
1

N

N∑
i=1

P (x,yi|θi)
P (yi|x,θi)

π(θi)

q(θi)
. (19)

The choice of q(θ) is important for the accuracy and computational efficiency
of the importance sampling approach. As discussed earlier, we want q(θ) to be a
good approximation of π(θ|x) but with heavier tails to ensure that the variance

of P̂q is small. We therefore investigate a range of proposals distributions based
on a fitted multivariate normal distribution with mean µ and covariance matrix
Σ based on the MCMC output. These include drawing θ from ISNj : N(µ, jΣ)
(j = 1, 2, 3), a multivariate Normal distribution with different variances; IStd :
td(µ,Σ) (d = 4, 6, 8), a multivariate Student’s t distribution with d degrees of
freedom, mean µ and covariance matrix d

d−2Σ (if d > 2) and ISmix : q(θ) =
0.95×N(θ;µ,Σ) + 0.05× π(θ) (mixture of a multivariate Normal density and
the prior).
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5.4. Marginal likelihood estimation

We consider the problem of estimating the marginal likelihood under the model
introduced in Section 5.1, using the methods described above. These estimators
were evaluated on synthetic data analogous to the real data in Melegaro et al.
(2004). More specifically, the parameter values were based on the maximum
likelihood estimates from the analysis of Pnc data; parameters were chosen
to be k1 = 0.012, k2 = 0.004, β11 = 0.047, β12 = 0.005, β21 = 0.106, β22 =
0.048, µ1 = 0.020, µ2 = 0.053, w = 1.184, π1 = 0.425 and π2 = 0.095. We set
the time-interval δt = 7. Only complete family transitions, where the infection
state of all household members was known on two consecutive observations, were
used previously (Melegaro et al., 2004; 51% of the full dataset). Although our
approach could easily handle the missing data, for comparability we match the
number of complete transitions by family size and number of adults to generate
our data set; a total of 66 families comprising 260 individuals including 94
children under 5 years. The simulations were designed so that real and simulated
datasets have the same sampling times. The hidden variable y consists of 1650
yj,t’s, comprising 6500 unobserved binary variables in total.

We compare the proposed importance sampling approach for estimating the
marginal likelihood (based on the 7 proposal densities) with bridge sampling
(Meng and Wong, 1996) (using the importance samples from ISmix), harmonic
mean (Newton and Raftery, 1994), Chib’s method (Chib, 1995; Chib and Jeli-
azkov, 2001) and the power posteriors method (Friel and Pettitt, 2008). Details
of the computation of these estimators are given in the supplementary material.
To compare the different methods on a fair basis, we chose to dedicate equivalent
amounts of computational effort for estimation of the log marginal likelihood,
instead of fixing the total number of samples.

Implementation details are given as follows. The construction of the impor-
tance density was based on 25000 MCMC samples after a burn-in of 5000,
obtained from the MCMC sampler described in Section 5.2. These posterior
samples were used to estimate the reference parameters µ and Σ for a multi-
variate Student’s t or normal proposal density. The marginal likelihood estimate
was then based on 25000 importance sampling draws from the obtained proposal
density q(θ), using the estimator in (19). To produce the bridge sampling esti-
mate, the 25000 samples from ISmix were combined with 250 thinned samples
from the MCMC. In order to apply Chib’s methods, the same posterior sam-
ples were used for computing the high posterior density point. The log marginal
was estimated by generating 22000 draws in each complete and reduced MCMC
run, with the first 2000 draws removed as burn-in. Harmonic mean analysis was
based on 50000 posterior samples, following a 3000 iteration burn-in. For the
power posterior method, it was necessary to specify the temperature scheme and
a pilot analysis (not counted in the computation cost) was used to choose 20
partitions on the unit interval. The MCMC sampler was run for 2650 iterations
for each temperature in the descending series, omitting the first 650 as burn-in,
finishing with 2650 samples at t = 0 (the prior).

Each procedure was repeated 50 times to provide an empirical Monte Carlo
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estimate of the variation in each approach. We also vary the total running time
in order to investigate the effect of this on the accuracy of the marginal like-
lihood estimates, see Table 1 in the supplementary material. For each analysis
method we used the same priors: Gamma(0.01,0.01) for the density factor w;
Beta(1,1) for the initial probabilities of infection π1 and π2 and Gamma(1,1)
for the remaining parameters.

HM

PP

Chib

ISmix

-931 -927 -923 -919

-1238 -1235 -1232

Log marginal likelihood

BSmix

ISmix

ISt8

ISt6

ISt4

ISN3

ISN2

ISN1

-1237.3 -1237.1

Log marginal likelihood

Fig 2. Left: Boxplots of the estimated log marginal likelihood for model M1 over 50 replicates
for our importance sampling approach with the mixture proposal (ISmix), Chib’s method
(Chib), power posteriors method (PP) and harmonic mean (HM) (note the different scales
for the top and bottom plots). Right: Zoomed in boxplots of the estimated log marginal
likelihood for model M1 over 50 replicates for each of our importance sampling approach
(ISN1 , ISN2 , ISN3 , ISt4 , ISt6 , ISt8 , ISmix) and bridge sampling (BSmix).

Figure 2 shows the variability of the eleven marginal likelihood estimators.
Except for the harmonic mean, all the methods appear to have produced con-
sistent estimates of the marginal likelihood. Chib’s method produced better
estimates of the marginal likelihood than the power posterior method, which is
more computationally expensive than the other methods and therefore uses a
small number of MCMC samples at each temperature, leading to large uncer-
tainty. However as seen in Figure 2, the bridge sampling and the importance
sampling methods offer significant improvements in precision over the other
methods. Moreover, increasing the number of samples N , led to a decrease in
the Monte Carlo standard errors of order O(

√
N), see Table 1 in the supple-

mentary material, indicating that the variances of the corresponding estimators
are finite.

The success of the importance sampling approach is not surprising since
it explores the posterior distribution of parameters more efficiently than the
other methods due to the independence of the samples drawn from the proposal
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density. More surprisingly we were unable to use the bridge sampling technique
to improve substantially on the standard errors, which dropped from 0.0196 for
ISmix to 0.0179 for BSmix. The bridge sampling estimator attempts to combine
information from the MCMC and importance samples, however the optimal
estimator is derived assuming that independent samples from the posterior were
available, which we approached by applying a thinning of 100 to the samples.
With low levels of thinning (results shown in supplementary material Figure
4) we found that bridge sampling actually increased the standard error of the
marginal likelihood estimate.

On the basis of this example, the lowest variance importance sampling esti-
mator was obtained using the proposal density ISmix – a mixture of the prior
and the normal fitted to the posterior samples. Therefore, in the next section
we use this proposal density when estimating the log marginal likelihood via
importance sampling.

5.5. Model comparison

In this Section, we apply the marginal likelihood estimation approaches to the
problem of Bayesian model choice. We focus on their ability to distinguish be-
tween biologically motivated hypotheses concerning the dynamics of Pnc trans-
mission. In particular we compare their performance against the established
technique of Reversible Jump Markov Chain Monte Carlo (RJMCMC) and then
demonstrate that the importance sampling approach can solve problems that
are extremely challenging with RJMCMC. We show that using our approach it is
possible to answer the epidemiological important question of how household size
is related to transmission with extended discussion given in the supplementary
material.

Suppose that we wish to evaluate the evidence in favour of the community
acquisition rates being equal for adults and children, in the hope of developing
a more parsimonious model. We call the model described in Section 5.1, in
which children have community acquisition rate k1 and adults have rate k2,
model M1. The nested model, in which k1 = k2 is called M2. We generated
realistic simulated datasets from each of these models and then used importance
sampling, bridge sampling, Chib’s method, power posteriors, the harmonic mean
and reversible jump MCMC to estimate the Bayes factor in favour of M1,
denoted by B12. As before, we used approximately the same computational effort
for each of these approaches. For M1 we assumed k1 = 0.012 and k2 = 0.004,
whilst for M2 we assumed k1 = k2 = 0.008.

Details of the RJMCMC algorithm for selecting between modelsM1 andM2

are given in the supplementary material. We ran the RJMCMC chain with a
30000 burn-in followed by 76000 samples which ensured that similar computa-
tional effort was given to RJMCMC as to the other methods. When the evidence
is strongly in favour of one model, the RJMCMC will not move between models
very often and can provide poor estimates of the Bayes factor. A variant of the
method, called RJMCMC corrected (RJcor), can tackle this issue by assigning
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higher prior probability to the model that is visited less often. This probability
is estimated as π(Mm) = 1 − π̂(Mm | x), where π̂(Mm | x) is obtained from
a pilot run of RJMCMC with initial π(Mm) = 0.5, for m = 1, 2. For RJcor
we did 30000 pilot iterations and then another 76000 iterations, of which 30000
were discarded as a burn in.

Figure 3 provides a graphical representation of the variability in log(B12) over
50 repeats of each Monte Carlo approach. The plot highlights that the estimators
based on importance sampling and bridge sampling were the most accurate
in both scenarios. The left panel of Figure 3 gives results for data generated
fromM1. Importance sampling, bridge sampling, Chib and RJ methods lead to
similar estimates, whereas power posterior and harmonic mean overestimated
the log Bayes factor. Moreover, RJcor produced slightly more accurate estimates
of the log Bayes factor than vanilla RJMCMC. All methods selected the correct
model, with largest variation from the harmonic mean estimator. In the right
panel of Figure 3, the results use data generated from model M2. Due to the
huge variance in log(B12), the harmonic mean sometimes favoured the wrong
model. Although the remaining methods correctly identified the true model,
the importance and bridge sampling methods again produced the most precise
estimates of the Bayes factor; the standard errors provided by the two methods
are almost identical.

HM

PP

ISmix

RJ

RJcor

Chib

BSmix

ISmix

2 5 8 12 16 20 24

2 3 4 5

Log B12

(a) Data simulated from model M1.

HM

PP

ISmix

RJ

RJcor

Chib

BSmix

ISmix

-22 -15 -9 -4 1 5 9

-4 -3 -2 -1 0

Log B12

(b) Data simulated from model M2.

Fig 3. Variability of the log Bayes factor estimates based on 50 Monte Carlo repeats for the
importance sampling method with mixture proposals (ISmix), bridge sampling method with
mixture proposals (BSmix), Chib’s method (Chib), reversible jump MCMC (RJ), corrected
reversible jump MCMC (RJcor), power posteriors (PP) and harmonic mean (HM) methods
(note the different scales for the top and bottom plots).

Figure 4 demonstrates the evolution of the log Bayes factor in favour of
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M1 as a function of computation time using data generated from M1. The
importance sampling estimator (in blue) converges much more rapidly than the
other estimators, showing very tight credible intervals. Chib’s method (in green)
and corrected RJMCMC (in red) appear to converge to the same value, but more
slowly and have wider CIs. The power posterior method gradually approaches
the consensus estimate, requiring significantly more samples to stabilize. The
harmonic mean estimator was heavily unstable and also provided much wider
credible intervals than the other methods.
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Fig 4. Evolution of log Bayes factor estimates in favour of model M1 as a function of
computation time. The solid lines corresponds to the median and the shaded areas give the 95%
credible intervals, estimated from 50 Monte Carlo replicates. Yellow represents the harmonic
mean method, grey is for the power posterior, red and green correspond to RJMCMC corrected
and Chib’s methods respectively and blue represents the importance sampling approach with
the mixture proposals.

In the supplementary material further model comparison questions are con-
sidered and the strength of the importance sampling technique for answering
these questions is further demonstrated. In particular, we consider heterogeneity
in household transmission rates, density-dependence in within-household trans-
mission and the amount of missing data.
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6. Conclusions

In this paper we have introduced a simple three stage algorithm for efficiently es-
timating the marginal likelihood. The key components are an MCMC algorithm
for obtaining samples from the posterior distribution, π(θ|x), an approximat-
ing distribution q(θ) to sample from and an effective estimate of the likelihood
π(x|θ). The first observation is whilst an MCMC algorithm will often be rela-
tively straightforward to construct, alternative methods for sampling from the
posterior distribution could be equally considered. Moreover, it is not impor-
tant if a sample from an approximate posterior distribution (for example, Monte
Carlo within Metropolis; O’Neill et al., 2000) is used since all that is required
for computation of the marginal likelihood is to be able to make a reasonable
choice of q(·). The key limitation to using this approach is effective estimation of
the likelihood π(x|θ) in cases where it is not analytically tractable. In Section 5
of this paper the temporal nature of the data allowed the FFBS algorithm to be
utilised to compute π(x|θ) and more generally filtering methods are a promising
avenue of research to explore in the estimation of π(x|θ). The importance sam-
pling and the associated estimation of the likelihood is trivially parallelisable
which can be utilised to speed up implementation. Finally, in cases where the
likelihood can easily be computed the algorithm becomes a simple add-on to
MCMC to compute the marginal likelihood.
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