86 research outputs found

    Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.

    Get PDF
    Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained

    Malaria is a cause of iron deficiency in African children

    Get PDF
    Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%

    Distinct Kinetics of Memory B-Cell and Plasma-Cell Responses in Peripheral Blood Following a Blood-Stage Plasmodium chabaudi Infection in Mice

    Get PDF
    B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgDβˆ’ IgMβˆ’ CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood

    Effect of Acute Plasmodium falciparum Malaria on Reactivation and Shedding of the Eight Human Herpes Viruses

    Get PDF
    Human herpes viruses (HHVs) are widely distributed pathogens. In immuno-competent individuals their clinical outcomes are generally benign but in immuno-compromised hosts, primary infection or extensive viral reactivation can lead to critical diseases. Plasmodium falciparum malaria profoundly affects the host immune system. In this retrospective study, we evaluated the direct effect of acute P. falciparum infection on reactivation and shedding of all known human herpes viruses (HSV-1, HSV-2, VZV, EBV, CMV, HHV-6, HHV-7, HHV-8). We monitored their presence by real time PCR in plasma and saliva of Ugandan children with malaria at the day of admission to the hospital (day-0) and 14 days later (after treatment), or in children with mild infections unrelated to malaria. For each child screened in this study, at least one type of HHV was detected in the saliva. HHV-7 and HHV-6 were detected in more than 70% of the samples and CMV in approximately half. HSV-1, HSV-2, VZV and HHV-8 were detected at lower frequency. During salivary shedding the highest mean viral load was observed for HSV-1 followed by EBV, HHV-7, HHV-6, CMV and HHV-8. After anti-malarial treatment the salivary HSV-1 levels were profoundly diminished or totally cleared. Similarly, four children with malaria had high levels of circulating EBV at day-0, levels that were cleared after anti-malarial treatment confirming the association between P. falciparum infection and EBV reactivation. This study shows that acute P. falciparum infection can contribute to EBV reactivation in the blood and HSV-1 reactivation in the oral cavity. Taken together our results call for further studies investigating the potential clinical implications of HHVs reactivation in children suffering from malaria

    Acquisition of naturally occurring antibody responses to recombinant protein domains of Plasmodium falciparum erythrocyte membrane protein 1

    Get PDF
    Background: Antibodies targeting variant antigens expressed on the surface of Plasmodium falciparum infected erythrocytes have been associated with protection from clinical malaria. The precise target for these antibodies is unknown. The best characterized and most likely target is the erythrocyte surface-expressed variant protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Methods: Using recombinant proteins corresponding to five domains of the expressed A4 var gene, A4 PfEMP1, the naturally occurring antibody response was assessed, by ELISA, to each domain in serum samples obtained from individuals resident in two communities of differing malaria transmission intensity on the Kenyan coast. Using flow cytometry, the correlation in individual responses to each domain with responses to intact A4-infected erythrocytes expressing A4 PfEMP1 on their surface as well as responses to two alternative parasite clones and one clinical isolate was assessed. Results: Marked variability in the prevalence of responses between each domain and between each transmission area was observed, as wasa strong correlation between age and reactivity with some but not all domains. Individual responses to each domain varied strikingly, with some individuals showing reactivity to all domains and others with no reactivity to any, this was apparent at all age groups. Evidence for possible cross-reactivity in responses to the domain DBL4Ξ³ was found. Conclusion: Individuals acquire antibodies to surface expressed domains of a highly variant protein. The finding of potential cross-reactivity in responses to one of these domains is an important initial finding in the consideration of potential vaccine targets

    Antigen-Specific B Memory Cell Responses to Plasmodium falciparum Malaria Antigens and Schistosoma haematobium Antigens in Co-Infected Malian Children

    Get PDF
    Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP) Malian children have age-dependent protection from malaria compared to matched schistosomiasis-negative (SN) children. Evidence of durable immunologic memory to malaria antigens is conflicting, particularly in young children and the effect of concomitant schistomiasis upon acquisition of memory is unknown. We examined antigen-specific B memory cell (MBC) frequencies (expressed as percentage of total number of IgG-secreting cells) in 84 Malian children aged 4–14 to malaria blood-stage antigens, apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP-1) and to schistosomal antigens, Soluble Worm Antigenic Preparation (SWAP) and Schistosoma Egg Antigen (SEA), at a time point during the malaria transmission season and a follow-up dry season visit. We demonstrate, for the first time, MBC responses to S. haematobium antigens in Malian children with urinary egg excretion and provide evidence of seasonal acquisition of immunologic memory, age-associated differences in MBC acquisition, and correlation with circulating S. haematobium antibody. Moreover, the presence of a parasitic co-infection resulted in older children, aged 9–14 years, with underlying S. haematobium infection having significantly more MBC response to malaria antigens (AMA1 and MSP1) than their age-matched SN counterparts. We conclude that detectable MBC response can be measured against both malaria and schistosomal antigens and that the presence of S. haematobium may be associated with enhanced MBC induction in an age-specific manner

    Functional Memory B Cells and Long-Lived Plasma Cells Are Generated after a Single Plasmodium chabaudi Infection in Mice

    Get PDF
    Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses

    The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

    Get PDF
    Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1Ξ± domains bind CD36. Here we describe the CD36-binding portion of a CIDR1Ξ± domain, MC179, as a bundle of three Ξ±-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1Ξ± three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1Ξ± and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1Ξ± domains are approximately 100 residues larger and that CIDR1Ξ± domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the molecular basis of cytoadherence

    Splenic CD11c(+) cells derived from semi-immune mice protect naive mice against experimental cerebral malaria

    Get PDF
    Background: Immunity to malaria requires innate, adaptive immune responses and Plasmodium-specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (\u27three-cure\u27) were required to protect mice against Plasmodium berghei (ANKA strain) infection. Methods: C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semiimmune mice were isolated and transferred into naive mice which were subsequently challenged and followed up by survival and parasitaemia. Results: The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naive littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti-P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naive counterparts. Conclusion: CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody
    • …
    corecore