9 research outputs found

    Central African Hunters Exposed to Simian Immunodeficiency Virus

    Get PDF
    HIV-seronegative Cameroonians with exposure to nonhuman primates were tested for simian immunodeficiency virus (SIV) infection. Seroreactivity was correlated with exposure risk (p<0.001). One person had strong humoral and weak cellular immune reactivity to SIVcol peptides. Humans are exposed to and possibly infected with SIV, which has major public health implications

    HIV Genetic Diversity in Cameroon: Possible Public Health Importance

    Full text link
    To monitor the evolving molecular epidemiology and genetic diversity of HIV in a country where many distinct strains cocirculate, we performed genetic analyses on sequences from 75 HIV-1-infected Cameroonians: 74 were group M and 1 was group O. Of the group M sequences, 74 were classified into the following env gp41 subtypes or recombinant forms: CRF02 (n = 54), CRF09 (n = 2), CRF13 (n = 2), A (n = 5), CRF11 (n = 4), CRF06 (n = 1), G (n = 2), F2 (n = 2), and E (n = 1, CRF01), and 1 was a JG recombinant. Comparison of phylogenies for 70 matched gp41 and protease sequences showed inconsistent classifications for 18 (26%) strains. Our data show that recombination is rampant in Cameroon with recombinant viruses continuing to recombine, adding to the complexity of circulating HIV strains. This expanding genetic diversity raises public health concerns for the ability of diagnostic assays to detect these unique HIV mosaic variants and for the development of broadly effective HIV vaccines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63150/1/aid.2006.22.812.pd

    Simultaneous Detection of Major Drug Resistance Mutations in the Protease and Reverse Transcriptase Genes for HIV-1 Subtype C by Use of a Multiplex Allele-Specific Assay

    Get PDF
    High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5′ end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring

    Contribution of PEPFAR-Supported HIV and TB Molecular Diagnostic Networks to COVID-19 Testing Preparedness in 16 Countries.

    Get PDF
    The US President's Emergency Plan for AIDS Relief (PEPFAR) supports molecular HIV and tuberculosis diagnostic networks and information management systems in low- and middle-income countries. We describe how national programs leveraged these PEPFAR-supported laboratory resources for SARS-CoV-2 testing during the COVID-19 pandemic. We sent a spreadsheet template consisting of 46 indicators for assessing the use of PEPFAR-supported diagnostic networks for COVID-19 pandemic response activities during April 1, 2020, to March 31, 2021, to 27 PEPFAR-supported countries or regions. A total of 109 PEPFAR-supported centralized HIV viral load and early infant diagnosis laboratories and 138 decentralized HIV and TB sites reported performing SARS-CoV-2 testing in 16 countries. Together, these sites contributed to >3.4 million SARS-CoV-2 tests during the 1-year period. Our findings illustrate that PEPFAR-supported diagnostic networks provided a wide range of resources to respond to emergency COVID-19 diagnostic testing in 16 low- and middle-income countries

    Early Diagnosis of HIV Infection in Infants - One Caribbean and Six Sub-Saharan African Countries, 2011-2015.

    Get PDF
    Pediatric human immunodeficiency virus (HIV) infection remains an important public health issue in resource-limited settings. In 2015, 1.4 million children aged 50% decline. The most common challenges for access to testing for early infant diagnosis included difficulties in specimen transport, long turnaround time between specimen collection and receipt of results, and limitations in supply chain management. Further reductions in HIV mortality in children can be achieved through continued expansion and improvement of services for early infant diagnosis in PEPFAR-supported countries, including initiatives targeted to reach HIV-exposed infants, ensure access to programs for early infant diagnosis of HIV, and facilitate prompt linkage to treatment for children diagnosed with HIV infection

    Prevalence and correlates of active syphilis and HIV co-Infection among sexually active persons aged 15-59 years in Zambia: Results from the Zambia Population-based HIV Impact Assessment (ZAMPHIA) 2016.

    No full text
    ObjectivesThe main objectives of the study are to estimate HIV prevalence, active syphilis prevalence, and correlates of co-infection with HIV in Zambia, among recently sexually active individuals aged 15 to 59 years old.MethodsWe used data from the 2016 Zambia Population-based HIV Impact Assessment (ZAMPHIA), a national household survey that included biomarker testing for HIV and syphilis. Chembio DPP® Syphilis Screen and Confirm Assay was used to distinguish between active and older syphilis infections. This is the first time Chembio DPP® has been used in a national survey. Log-binominal modelling was utilized to understand the risk of acquiring HIV/active syphilis co-infection using select socio-demographic and sexual behavior variables. Multivariable analysis compared those with co-infection and those with no infection. All reported results account for the complex survey design and are weighted.ResultsA total of 19,114 individuals aged 15-59 years responded to the individual interview and had a valid syphilis and/or HIV test. The prevalence for those sexually active in the 12 months preceding ZAMPHIA 2016 was 3.5% and 13% for active syphilis and HIV, respectively. The prevalence of HIV/active syphilis co-infection was 1.5%. Factors associated with higher prevalence of co-infection versus no infection among females included, but were not limited to, those living in urban areas (adjusted prevalence ratio (aPR) = 3.0, 95% CI = 1.8, 4.8), those had sexual intercourse before age 15 years (aPR = 1.8, 95% CI = 1.1, 2.9), and those who had two or more sexual partners in the 12 months preceding the survey (aPR = 2.7, 95% CI = 1.6, 4.7).ConclusionThese findings show high prevalence for both mono-infection with HIV and syphilis, as well as co-infection with HIV/active syphilis in Zambia. There is a need for better screening and partner services, particularly among those engaging in high-risk sexual behaviors (e.g., engaging in transactional sex)

    Virus

    No full text
    HIV-seronegative Cameroonians with exposure to nonhuman primates were tested for simian immunodeficiency virus (SIV) infection. Seroreactivity was correlated with exposure risk (p&lt;0.001). One person had strong humoral and weak cellular immune reactivity to SIVcol peptides. Humans are exposed to and possibly infected with SIV, which has major public health implications. Two major public health priorities are ensuring the safety of the blood supply and preventing the emergence of new infectious diseases. Phylogenetic evidence shows that HIV-1 and HIV-2 were introduced into humans through independent cross-species transmission of simian immunodeficiency virus (SIV) strains from distinct, naturally infected, nonhuman primate (NHP) hosts. HIV-1 groups M, N, and O are believed to have arisen as 3 separate cross-species transmissions from chimpanzees, and each of the HIV-2 subtypes A–G was the result of independent transmissions from sooty mangabeys (Cercocebus atys) to humans. While laboratory exposure to NHPs has caused infections with SIV (1–3), no direct evidence has been seen of ongoing exposure to or infection with SIV in natural settings. Nevertheless, hunting and butchering wild NHPs for food, which expose humans to NHP blood and body fluids, are widespread in sub-Saharan Africa and may lead to ongoing transmission from any of the 33 species of NHP that are known to harbor their own unique SIV strains. Since ongoing lentivirus emergence would be of substantial importance to global public health, we looked for evidence of SIV in a unique collection of plasma fro

    Simultaneous Detection of Major Drug Resistance Mutations in the Protease and Reverse Transcriptase Genes for HIV-1 Subtype C by Use of a Multiplex Allele-Specific Assay

    No full text
    High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5′ end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring
    corecore