23 research outputs found

    Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A

    Get PDF
    Coronin proteins are evolutionary conserved WD repeat containing proteins that have been proposed to carry out different functions. In; Dictyostelium; , the short coronin isoform, coronin A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation of multicellular development. Generally thought of as modulators of F-actin, coronin A and its mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent manner. Therefore, it remains unclear whether or not coronin A carries out its functions through its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known. Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells and in vitro. Interactome analysis showed the association with a diverse set of interaction partners, including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10 isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a time-dependent manner

    An evolutionarily conserved coronin-dependent pathway defines cell population size

    Get PDF
    Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density-sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated "kin-to-kin" or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density-dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size

    Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth

    Get PDF
    BACKGROUND: Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. RESULTS: The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. CONCLUSIONS: LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development

    Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation

    Get PDF
    The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. Methods: Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. Results: Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. Conclusions: The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses

    Transmission electron microscopy imaging to analyze chromatin density distribution at the nanoscale level

    Full text link
    Transmission electron microscopy (TEM) is used to study the fine ultrastructural organization of cells. Delicate specimen preparation is required for results to reflect the "native" ultrastructural organization of subcellular features such as the nucleus. Despite the advent of high-resolution, fluorescent imaging of chromatin components, TEM still provides a unique and complementary level of resolution capturing chromatin organization at the nanoscale level. Here, we describe the workflow, from tissue preparation, TEM image acquisition and image processing, for obtaining a quantitative description of chromatin density distribution in plant cells, informing on local fluctuations and periodicity. Comparative analyses then allow to elucidate the structural changes induced by developmental or environmental cues, or by mutations affecting specific chromatin modifiers at the nanoscale level. We argue that this approach remains affordable and merits a renewed interest by the plant chromatin community

    Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8

    Full text link
    Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition

    Suppression of caspase 8 activity by a coronin 1-PI3Kδ pathway promotes T cell survival independently of TCR and IL-7 signaling

    No full text
    The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naive T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeat-containing protein coronin 1, which is dispensable for thymic selection and output, promoted naive T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase delta (PI3K delta), thereby suppressing caspase 8-mediated apoptosis. These results therefore reveal a coronin 1-dependent PI3K delta pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival

    Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum

    No full text
    Coronin proteins are widely expressed among eukaryotic organisms. Most coronins consist of a WD repeat domain followed by a C-terminal coiled coil. Dictyostelium discoideum expresses a single short coronin coronin A, which has been implicated in both actin modulation as well as multicellular differentiation. Whether coronin A's coiled coil is important for functionality, as well as the oligomeric state of coronin A is not known. Here, we show that the coiled-coil domain in Dictyostelium coronin A functions in homodimerization, is dispensable for coronin A stability and localization but essential for multicellular differentiation. These results allow a better understanding of the role for the coiled-coil domain of coronin A in oligomerization and demonstrate that its presence is essential for multicellular differentiation
    corecore