35 research outputs found

    Impacts of climate change on the hydrometeorological characteristics of the Soan River Basin, Pakistan

    Get PDF
    The global hydrological cycle is vulnerable to changing climatic conditions, especially in developing regions, which lack abundant resources and management of freshwater resources. This study evaluates the impacts of climate change on the hydrological regime of the Chirah and Dhoke Pathan sub catchments of the Soan River Basin (SRB), in Pakistan, by using the climate models included in the NEX-GDDP dataset and the hydrological model HBV-light. After proper calibration and validation, the latter is forced with NEX-GDDP inputs to simulate a historic and a future (under the RCP 4.5 and RCP 8.5 emission scenarios) streamflow. Multiple evaluation criteria were employed to find the best performing NEX-GDDP models. A different ensemble was produced for each sub catchment by including the five best performing NEX-GDDP GCMs (ACCESS1-0, CCSM4, CESM1-BGC, MIROC5, and MRI-CGCM3 for Chirah and BNU-ESM, CCSM4, GFDL-CM3. IPSL-CM5A-LR and NorESM1-M for Dhoke Pathan). Our results show that the streamflow is projected to decrease significantly for the two sub catchments, highlighting the vulnerability of the SRB to climate change

    On the benefits of bias correction techniques for streamflow simulation in complex terrain catchments: a case-study for the Chitral River Basin in Pakistan

    Get PDF
    This work evaluates the suitability of linear scaling (LS) and empirical quantile mapping (EQM) bias correction methods to generate present and future hydrometeorological variables (precipitation, temperature, and streamflow) over the Chitral River Basin, in the Hindukush region of Pakistan. In particular, LS and EQM are applied to correct the high-resolution statistically downscaled dataset, NEX-GDDP, which comprises 21 state-of-the-art general circulation models (GCMs) from the coupled model intercomparison project phase 5 (CMIP5). Raw and bias-corrected NEX-GDDP simulations are used to force the (previously calibrated and validated) HBV-light hydrological model to generate long-term (up to 2100) streamflow projections over the catchment. Our results indicate that using the raw NEX-GDDP leads to substantial errors (as compared to observations) in the mean and extreme streamflow regimes. Nevertheless, the application of LS and EQM solves these problems, yielding much more realistic and plausible streamflow projections for the XXI century

    Estimating GRACE terrestrial water storage anomaly using an improved point mass solution

    Get PDF
    The availability of terrestrial water storage anomaly (TWSA) data from the Gravity Recovery and Climate Experiment (GRACE) supports many hydrological applications. Five TWSA products are operational and publicly available, including three based on mass concentration (mascon) solutions and two based on the synthesis of spherical harmonic coefficients (SHCs). The mascon solutions have advantages regarding the synthesis of SHCs since the basis functions are represented locally rather than globally, which allows geophysical data constraints. Alternative new solutions based on SHCs are, therefore, critical and warranted to enrich the portfolio of user-friendly TWSA data based on different algorithms. TWSA data based on novel processing protocols is presented with a spatial re-sampling of 0.25 arc-degrees covering 2002–2022. This approach parameterizes the improved point mass (IPM) and adopts the synthesized residual gravitational potential as observations. The assay indicates that the proposed Hohai University (HHU-) IPM TWSA data reliably agree with the mascon solutions. The presented HHU-IPM TWSA data set would be instrumental in regional hydrological applications, particularly enabling improved assessment of regional water budgets

    Multivariate Drought Monitoring, Propagation, and Projection Using Bias‐Corrected General Circulation Models

    Get PDF
    Understanding how droughts are characterized, propagated, and projected, particularly multivariate droughts, is necessary to explain the variability and changes in drought characteristics. This study aims to understand multimodel global drought monitoring, propagation, and projection by utilizing a multivariate standardized drought index (MSDI) during the historical (1959–2014) and future (2045–2100) periods under two socioeconomic pathways SSPs (370 and 585), derived from the bias-corrected Coupled Model Intercomparison Project Phase 6 (CMIP6). Based on the energy metrics, the multivariate bias correction method outperformed other techniques in correcting the biases in the CMIP6 drought representation. The drought indicators demonstrate distinct categories for meteorological, hydrological, and multivariate droughts. There were significant high cross correlations between Heatwave Total Length (HWTL) and MSDI in Africa and South America for all lagged times. Europe and North America generally saw the maximum MSDI drought duration (228 months) during the historical period. For future projections, Africa recorded the maximum drought duration (197 months), while Europe witnessed the minimum drought duration for SSP 370 (171 months), and North America (149 months) for SSP 585. Furthermore, during the historical period in tropical Africa, the propagation of meteorological to hydrological drought was slower during the wet months than during the dry months. Under the SSP 370 future projection, there was a shift in the long period of meteorological-hydrological propagation from the middle and late wet months to the beginning of the wet months in tropical Africa. Therefore, tracking and projecting drought characteristics is vital for understanding the risk of drought-related consequences

    Safe and just Earth system boundaries

    Get PDF
    The stability and resilience of the Earth system and human well-being are inseparably linked 1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently 4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice) 4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future

    Safe and just Earth system boundaries

    Get PDF
    The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future

    How can we live within the safe and just Earth system boundaries for blue water?

    No full text
    Matlab codes and data for annual groundwater recharge volumes over the 2003-2016 period. The MATLAB resources for groundwater processing and complementary GPCC-based rainfall analysis are included

    Remote Sensing of West Africa's Water Resources Using Multi-Satellites and Models

    No full text
    The preponderance of evidence shows that the warming of the climate system affects natural systems, leading to accelerations in the global hydrological cycle. This thesis discusses hydrological processes and introduces a new multivariate framework to improve drought characterisation/regionalisation in West Africa. Protocols that supports the practical assessment of the influence of global climate and reservoir systems on West Africa’s terrestrial hydrology are outlined. Complementary perspectives on hydrological controls on surface vegetation dynamics are also highlighted

    Digital terrain model height estimation using support vector machine regression

    Get PDF
    Digital terrain model interpolation is intrinsically a surface fitting problem, in which unknown heights H are estimated from known X-Y coordinates. Notable methods of digital terrain model interpolation include inverse distance to power, local polynomial, minimum curvature, modified Shepard’s method, nearest neighbour and polynomial regression. We investigated the support vector machine regression (SVMR) as a new alternative method to these models. SVMR is a contemporary machine learning algorithm that has been applied to several real-world problems aside from digital terrain modelling. The SVMR results were compared with those from notable parametric (the nearest neighbour) and non-parametric (the artificial neural network) techniques. Four categories of error analysis were used to assess the accuracy of the modelling: minimum error, maximum error, means error and standard error. The results indicate that SVMR furnished the lowest error, followed by the artificial neural network model. The SVMR also produced the smoothest surface followed by the artificial neural network model. The high accuracy furnished by SVMR in this experiment attests that SVMR is a promising model for digital terrain model interpolation
    corecore