137 research outputs found

    Chondromyxoid Fibroma of Sphenoid Sinus with Unusual Calcifications: Case Report with Literature Review

    Get PDF
    Chondromyxoid fibroma (CMF) is a rare benign primary tumor which usually affects the metaphyses of the long bone of the lower extremities in childhood and young adults. Rarely, CMF occurs in the skull base and parasinuses, which may be difficult to distinguish from chondrosarcoma or chordoma and other tumors in the head. It is composed of chondroid, myxoid, and fibrous tissue growth in a lobular pattern, infrequently with calcifications. We report one case of CMF involving the sphenoid sinus mimicking a chondrosarcoma. The tumor mass showed calcifications on images and histology

    The Two-Photon Exchange Experiment at DESY

    Full text link
    We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of 2.12×10352.12\times10^{35} cm2^{-2}\cdots1^{-1}\cdotsr1^{-1} (200\approx200 times the luminosity achieved by OLYMPUS). The proposed TPEX experiment entails a commissioning run at 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to Q2=4.6Q^2=4.6 (GeV/cc)2^2 (twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations.Comment: 10 pages, 14 figures. arXiv admin note: substantial text overlap with arXiv:2301.0470

    A machine learning approach for feature selection traffic classification using security analysis

    Get PDF
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Class imbalance has become a big problem that leads to inaccurate traffic classification. Accurate traffic classification of traffic flows helps us in security monitoring, IP management, intrusion detection, etc. To address the traffic classification problem, in literature, machine learning (ML) approaches are widely used. Therefore, in this paper, we also proposed an ML-based hybrid feature selection algorithm named WMI_AUC that make use of two metrics: weighted mutual information (WMI) metric and area under ROC curve (AUC). These metrics select effective features from a traffic flow. However, in order to select robust features from the selected features, we proposed robust features selection algorithm. The proposed approach increases the accuracy of ML classifiers and helps in detecting malicious traffic. We evaluate our work using 11 well-known ML classifiers on the different network environment traces datasets. Experimental results showed that our algorithms achieve more than 95% flow accuracy results

    Observations of trace gases and aerosols over the Indian Ocean during the monsoon transition period

    Get PDF
    Characteristics of trace gases (O3, CO, CO2, CH4 and N2O) and aerosols (particle size of 2.5 micron) were studied over the Arabian Sea, equatorial Indian Ocean and southwest part of the Bay of Bengal during the monsoon transition period (October-November, 2004). Flow of pollutants is expected from south and southeast Asia during the monsoonal transition period due to the patterns of wind flow which are different from the monsoon period. This is the first detailed report on aerosols and trace gases during the sampled period as the earlier Bay of Bengal Experiment (BOBMEX), Arabian Sea Monsoon Experiment (ARMEX) and Indian Ocean Experiments (INDOEX) were during monsoon seasons. The significant observations during the transition period include: (i) low ozone concentration of the order of 5 ppbv around the equator, (ii) high concentrations of CO2, CH4 and N2O and (iii) variations in PM2.5 of 5-20μg/m3

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    Full text link
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figure

    The two-photon exchange experiment at DESY

    Get PDF
    We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of 2.12×1035 cm-2·s-1 (≈200 times the luminosity achieved by OLYMPUS). The proposed two-photon exchange experiment (TPEX) entails a commissioning run at a beam energy of 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to Q2=4.6 (GeV/c)2 (twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations
    corecore