828 research outputs found

    Inelastic Interaction Corrections and Universal Relations for Full Counting Statistics

    Full text link
    We analyze in detail the interaction correction to Full Counting Statistics (FCS) of electron transfer in a quantum contact originating from the electromagnetic environment surrounding the contact. The correction can be presented as a sum of two terms, corresponding to elastic/inelastic electron transfer. Here we primarily focus on the inelastic correction. For our analysis, it is important to understand more general -- universal -- relations imposed on FCS only by quantum mechanics and statistics with no regard for a concrete realization of a contact. So we derive and analyze these relations. We reveal that for FCS the universal relations can be presented in a form of detailed balance. We also present several useful formulas for the cumulants. To facilitate the experimental observation of the effect, we evaluate cumulants of FCS at finite voltage and temperature. Several analytical results obtained are supplemented by numerical calculations for the first three cumulants at various transmission eigenvalues.Comment: 10 pages, 3 figure

    Exact dynamical exchange-correlation kernel of a weakly inhomogeneous electron gas

    Get PDF
    The dynamical exchange-correlation kernel fxcf_{xc} of a non-uniform electron gas is an essential input for the time-dependent density functional theory of electronic systems. The long-wavelength behavior of this kernel is known to be of the form fxc=α/q2f_{xc}= \alpha/q^2 where qq is the wave vector and α\alpha is a frequency-dependent coefficient. We show that in the limit of weak non-uniformity the coefficient α\alpha has a simple and exact expression in terms of the ground-state density and the frequency-dependent kernel of a {\it uniform} electron gas at the average density. We present an approximate evaluation of this expression for Si and discuss its implications for the theory of excitonic effects.Comment: 5 pages, 2 figure

    Giant current fluctuations in an overheated single electron transistor

    Full text link
    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor (SET) leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.Comment: 10 pages, 11 figure

    Including nonlocality in exchange-correlation kernel from time-dependent current density functional theory: Application to the stopping power of electron liquids

    Get PDF
    We develop a scheme for building the scalar exchange-correlation (xc) kernel of time-dependent density functional theory (TDDFT) from the tensorial kernel of time-dependent {\em current} density functional theory (TDCDFT) and the Kohn-Sham current density response function. Resorting to the local approximation to the kernel of TDCDFT results in a nonlocal approximation to the kernel of TDDFT, which is free of the contradictions that plague the standard local density approximation (LDA) to TDDFT. As an application of this general scheme, we calculate the dynamical xc contribution to the stopping power of electron liquids for slow ions to find that our results are in considerably better agreement with experiment than those obtained using TDDFT in the conventional LDA.Comment: 6 pages, 3 figures, accepted to Phys. Rev.

    A one-channel conductor in an ohmic environment: mapping to a TLL and full counting statistics

    Full text link
    It is shown that a one-channel mesoscopic conductor in an ohmic environment can be mapped to the problem of a backscattering impurity in a Tomonaga-Luttinger liquid (TLL). This allows to determine non perturbatively the effect of the environment on IVI-V curves, and to find an exact relationship between dynamic Coulomb blockade and shot noise. We investigate critically how this relationship compares to recent proposals in the literature. The full counting statistics is determined at zero temperature.Comment: 5 pages, 2 figures, shortened version for publication in Phys. Rev. Let

    Feedback Control of Quantum Transport

    Full text link
    The current through nanostructures like quantum dots can be stabilized by a feedback loop that continuously adjusts system parameters as a function of the number of tunnelled particles nn. At large times, the feedback loop freezes the fluctuations of nn which leads to highly accurate, continuous single particle transfers. For the simplest case of feedback acting simultaneously on all system parameters, we show how to reconstruct the original full counting statistics from the frozen distribution.Comment: 4 pages, 2 figure

    Thermal deformation of concentrators in an axisymmetric temperature field

    Get PDF
    Axisymmetric thermal deformations of paraboloid mirrors, due to heating, are examined for a mirror with a optical axis oriented toward the Sun. A governing differential equation is derived using Mushtari-Donnel-Vlasov simplifications, and a solution is presented which makes it possible to determine the principal deformation characteristics

    On the shot-noise limit of a thermal current

    Full text link
    The noise power spectral density of a thermal current between two macroscopic dielectric bodies held at different temperatures and connected only at a quantum point contact is calculated. Assuming the thermal energy is carried only by phonons, we model the quantum point contact as a mechanical link, having a harmonic spring potential. In the weak coupling, or weak-link limit, we find the thermal current analog of the well-known electronic shot-noise expression.Comment: 4 pages, 1 figur
    corecore