1,742 research outputs found

    Competition Between Stripes and Pairing in a t-t'-J Model

    Full text link
    As the number of legs n of an n-leg, t-J ladder increases, density matrix renormalization group calculations have shown that the doped state tends to be characterized by a static array of domain walls and that pairing correlations are suppressed. Here we present results for a t-t'-J model in which a diagonal, single particle, next-near-neighbor hopping t' is introduced. We find that this can suppress the formation of stripes and, for t' positive, enhance the d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the stripes to evaporate into pairs and for t' < 0 to evaporate into quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure

    Superconductivity in the Cuprates as a Consequence of Antiferromagnetism and a Large Hole Density of States

    Full text link
    We briefly review a theory for the cuprates that has been recently proposed based on the movement and interaction of holes in antiferromagnetic (AF) backgrounds. A robust peak in the hole density of states (DOS) is crucial to produce a large critical temperature once a source of hole attraction is identified. The predictions of this scenario are compared with experiments. The stability of the calculations after modifying some of the original assumptions is addressed. We find that if the dispersion is changed from an antiferromagnetic band at half-filling to a tight binding coskx+coskycosk_x + cosk_y narrow band at =0.87 =0.87, the main conclusions of the approach remain basically the same i.e. superconductivity appears in the dx2−y2d_{x^2 - y^2}-channel and TcT_c is enhanced by a large DOS. The main features distinguishing these ideas from more standard theories based on antiferromagnetic correlations are here discussed.Comment: RevTex, 7 pages, 5 figures are available on reques

    Resonant X-ray diffraction studies on the charge ordering in magnetite

    Full text link
    Here we show that the low temperature phase of magnetite is associated with an effective, although fractional, ordering of the charge. Evidence and a quantitative evaluation of the atomic charges are achieved by using resonant x-ray diffraction (RXD) experiments whose results are further analyzed with the help of ab initio calculations of the scattering factors involved. By confirming the results obtained from X-ray crystallography we have shown that RXD is able to probe quantitatively the electronic structure in very complex oxides, whose importance covers a wide domain of applications.Comment: 4 pages 4 figures, accepted for publication in PR

    Differential approximation for Kelvin-wave turbulence

    Full text link
    I present a nonlinear differential equation model (DAM) for the spectrum of Kelvin waves on a thin vortex filament. This model preserves the original scaling of the six-wave kinetic equation, its direct and inverse cascade solutions, as well as the thermodynamic equilibrium spectra. Further, I extend DAM to include the effect of sound radiation by Kelvin waves. I show that, because of the phonon radiation, the turbulence spectrum ends at a maximum frequency ω∗∼(ϵ3cs20/κ16)1/13\omega^* \sim (\epsilon^3 c_s^{20} / \kappa^{16})^{1/13} where ϵ\epsilon is the total energy injection rate, csc_s is the speed of sound and κ\kappa is the quantum of circulation.Comment: Prepared of publication in JETP Letter

    Qualitative understanding of the sign of t' asymmetry in the extended t-J Model and relevance for pairing properties

    Full text link
    Numerical calculations illustrate the effect of the sign of the next nearest-neighbor hopping term t' on the 2-hole properties of the t-t'-J model. Working mainly on 2-leg ladders, in the -1.0 < t'/t < 1.0 regime, it is shown that introducing t' in the t-J model is equivalent to effectively renormalizing J, namely t' negative (positive) is equivalent to an effective t-J model with smaller (bigger) J. This effect is present even at the level of a 2x2 plaquette toy model, and was observed also in calculations on small square clusters. Analyzing the transition probabilities of a hole-pair in the plaquette toy model, it is argued that the coherent propagation of such hole-pair is enhanced by a constructive interference between both t and t' for t'>0. This interference is destructive for t'<0.Comment: 5 pages, 4 figures, to appear in PRB as a Rapid Communicatio

    d_{x^2-y^2} Symmetry and the Pairing Mechanism

    Full text link
    An important question is if the gap in the high temperature cuprates has d_{x^2-y^2} symmetry, what does that tell us about the underlying interaction responsible for pairing. Here we explore this by determining how three different types of electron-phonon interactions affect the d_{x^2-y^2} pairing found within an RPA treatment of the 2D Hubbard model. These results imply that interactions which become more positive as the momentum transfer increases favor d_{x^2-y^2} pairing in a nearly half-filled band.Comment: 9 pages and 2 eps figs, uses revtex with epsf, in press, PR

    Hole Doping Evolution of the Quasiparticle Band in Models of Strongly Correlated Electrons for the High-T_c Cuprates

    Full text link
    Quantum Monte Carlo (QMC) and Maximum Entropy (ME) techniques are used to study the spectral function A(p,ω)A({\bf p},\omega) of the one band Hubbard model in strong coupling including a next-nearest-neighbor electronic hopping with amplitude t′/t=−0.35t'/t= -0.35. These values of parameters are chosen to improve the comparison of the Hubbard model with angle-resolved photoemission (ARPES) data for Sr2CuO2Cl2Sr_2 Cu O_2 Cl_2. A narrow quasiparticle (q.p.) band is observed in the QMC analysis at the temperature of the simulation T=t/3T=t/3, both at and away from half-filling. Such a narrow band produces a large accumulation of weight in the density of states at the top of the valence band. As the electronic density decreases further away from half-filling, the chemical potential travels through this energy window with a large number of states, and by ∼0.70 \sim 0.70 it has crossed it entirely. The region near momentum (0,π)(0,\pi) and (π,0)(\pi,0) in the spectral function is more sensitive to doping than momenta along the diagonal from (0,0)(0,0) to (π,π)(\pi,\pi). The evolution with hole density of the quasiparticle dispersion contains some of the features observed in recent ARPES data in the underdoped regime. For sufficiently large hole densities the ``flat'' bands at (π,0)(\pi,0) cross the Fermi energy, a prediction that could be tested with ARPES techniques applied to overdoped cuprates. The population of the q.p. band introduces a {\it hidden} density in the system which produces interesting consequences when the quasiparticles are assumed to interact through antiferromagnetic fluctuations and studied with the BCS gap equation formalism. In particular, a region of extended s-wave is found to compete with d-wave in the overdoped regime, i.e. when the chemical potential has almost entirely crossed the q.p.Comment: 14 pages, Revtex, with 13 embedded ps figures, submitted to Phys. Rev. B., minor modifications in the text and in figures 1b, 2b, 3b, 4b, and 6

    Extended bound states and resonances of two fermions on a periodic lattice

    Full text link
    The high-TcT_c cuprates are possible candidates for d-wave superconductivity, with the Cooper pair wave function belonging to a non-trivial irreducible representation of the lattice point group. We argue that this d-wave symmetry is related to a special form of the fermionic kinetic energy and does not require any novel pairing mechanism. In this context, we present a detailed study of the bound states and resonances formed by two lattice fermions interacting via a non-retarded potential that is attractive for nearest neighbors but repulsive for other relative positions. In the case of strong binding, a pair formed by fermions on adjacent lattice sites can have a small effective mass, thereby implying a high condensation temperature. For a weakly bound state, a pair with non-trivial symmetry tends to be smaller in size than an s-wave pair. These and other findings are discussed in connection with the properties of high-TcT_c cuprate superconductors.Comment: 21 pages, RevTeX, 4 Postscript figures, arithmetic errors corrected. An abbreviated version (no appendix) appeared in PRB on March 1, 199

    Modeling Kelvin wave cascades in superfluid helium

    Get PDF
    We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM

    Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions

    Full text link
    We demonstrate a variety of ordered patterns, including hexagonal structures and chains, formed by colloidal particles (droplets) at the free surface of a nematic liquid crystal (LC). The surface placement introduces a new type of particle interaction as compared to particles entirely in the LC bulk. Namely, director deformations caused by the particle lead to distortions of the interface and thus to capillary attraction. The elastic-capillary coupling is strong enough to remain relevant even at the micron scale when its buoyancy-capillary counterpart becomes irrelevant.Comment: 10 pages, 3 figures, to be published in Physical Review Letter
    • …
    corecore