136 research outputs found

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde

    Population connectivity of the highly migratory shortfin mako (Isurus oxyrinchus Rafinesque 1810) and implications for management in the Southern Hemisphere

    Get PDF
    Published: 20 November 2018In this paper we combine analyses of satellite telemetry and molecular data to investigate spatial connectivity and genetic structure among populations of shortfin mako (Isurus oxyrinchus) in and around Australian waters, where this species is taken in recreational and commercial fisheries. Mitochondrial DNA data suggest matrilineal substructure across hemispheres, while nuclear DNA data indicate shortfin mako may constitute a globally panmictic population. There was generally high genetic connectivity within Australian waters. Assessing genetic connectivity across the Indian Ocean basin, as well as the extent that shortfin mako exhibit sex biases in dispersal patterns would benefit from future improved sampling of adult size classes, particularly of individuals from the eastern Indian Ocean. Telemetry data indicated that Australasian mako are indeed highly migratory and frequently make long-distance movements. However, individuals also exhibit fidelity to relatively small geographic areas for extended periods. Together these patterns suggest that shortfin mako populations may be genetically homogenous across large geographical areas as a consequence of few reproductively active migrants, although spatial partitioning exists. Given that connectivity appears to occur at different scales, management at both the national and regional levels seems most appropriate.Shannon Corrigan, Andrew D. Lowther, Luciano B. Beheregaray, Barry D. Bruce, Geremy Cliff, Clinton A. Duffy, Alan Foulis, Malcolm P. Francis, Simon D. Goldsworthy, John R. Hyde, Rima W. Jabado, Dovi Kacev, Lindsay Marshall, Gonzalo R. Mucientes, Gavin J. P. Naylor, Julian G. Pepperell, Nuno Queiroz, William T. White, Sabine P. Wintner and Paul J. Roger

    Articulating the effect of food systems innovation on the Sustainable Development Goals

    Get PDF
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level

    Developing manufacturing control software: A survey and critique

    Full text link
    The complexity and diversity of manufacturing software and the need to adapt this software to the frequent changes in the production requirements necessitate the use of a systematic approach to developing this software. The software life-cycle model (Royce, 1970) that consists of specifying the requirements of a software system, designing, implementing, testing, and evolving this software can be followed when developing large portions of manufacturing software. However, the presence of hardware devices in these systems and the high costs of acquiring and operating hardware devices further complicate the manufacturing software development process and require that the functionality of this software be extended to incorporate simulation and prototyping.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45542/1/10696_2005_Article_BF01328739.pd

    Mouse Chromosome 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd

    Measurement of the gamma ray background in the Davis Cavern at the Sanford Underground Research Facility

    Get PDF
    Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of 1.9±0.4~γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220±60~Bq/kg of 40K, 29±15~Bq/kg of 238U, and 13±3~Bq/kg of 232Th

    The design, implementation, and performance of the LZ calibration systems

    Get PDF
    LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments
    • …
    corecore