174 research outputs found

    DarkSide status and prospects

    Get PDF
    Sem informaçãoDarkSide uses a dual-phase Liquid Argon Time Projection Chamber to search for WIMP dark matter. The current detector, DarkSide-50, is running since mid 2015 with a target of 50 kg of Argon from an underground source. Here it is presented the latest results of searches of WIMP-nucleus interactions, with WIMP masses in the GeV-TeV range, and of WIMP-electron interactions, in the sub-GeV mass range. The future of DarkSide with a new generation experiment, involving a global collaboration from all the current Argon based experiments, is presented.422-315Sem informaçãoSem informaçãoSem informaçã

    New CC0\pi\ GENIE Model Tune for MicroBooNE

    Full text link
    A novel tune has been made for the MicroBooNE experiment. The fit uses 4 new parameters within the GENIE v3.0.6 Monte Carlo program. Charged current pionless data from the T2K experiment was used. New uncertainties were obtained. These results will be used in future MicroBooNE analyses.Comment: 24 pages, 14 figure

    First measurement of quasi-elastic Λ\Lambda baryon production in muon anti-neutrino interactions in the MicroBooNE detector

    Full text link
    We present the first measurement of the cross section of Cabibbo-suppressed Λ\Lambda baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the Main Injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10202.2 \times 10^{20} protons on target of neutrino mode running and 4.9×10204.9 \times 10^{20} protons on target of anti-neutrino mode running. An automated selection is combined with hand scanning, with the former identifying five candidate Λ\Lambda production events when the signal was unblinded, consistent with the GENIE prediction of 5.3±1.15.3 \pm 1.1 events. Several scanners were employed, selecting between three and five events, compared with a prediction from a blinded Monte Carlo simulation study of 3.7±1.03.7 \pm 1.0 events. Restricting the phase space to only include Λ\Lambda baryons that decay above MicroBooNE's detection thresholds, we obtain a flux averaged cross section of 2.01.7+2.2×10402.0^{+2.2}_{-1.7} \times 10^{-40} cm2/^2/Ar, where statistical and systematic uncertainties are combined

    First Measurement of Differential Charged Current Quasielasticlike νμ-Argon Scattering Cross Sections with the MicroBooNE Detector

    Get PDF
    We report on the first measurement of flux-integrated single differential cross sections for chargedcurrent (CC) muon neutrino (νμ) scattering on argon with a muon and a proton in the final state, 40Ar ðνμ; μpÞX. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59 × 1019 protons on target. Events are selected to enhance the contribution of CC quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single differential cross sections in final state muon and proton kinematics.We measure the integrated per-nucleus CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection threshold) of ð4.93 0.76stat 1.29sysÞ × 10−38 cm2, in good agreement with theoretical calculations. The single differential cross sections are also in overall good agreement with theoretical predictions, except at very forward muon scattering angles that correspond to low-momentum-transfer events.United States Department of Energy (DOE)National Science Foundation (NSF)Swiss National Science Foundation (SNSF)Science and Technology Facilities Council (STFC), part of the United Kingdom Research and InnovationRoyal Society of LondonAlbert Einstein Center for Fundamental Physics, Bern, SwitzerlandAzrieli FoundationZuckerman STEM Leadership ProgramIsrael Science FoundationVisiting Scholars Award Program of the Universities Research AssociationDE-AC02-07CH1135
    corecore