6,344 research outputs found

    Cooperative Glutamatergic and Cholinergic Mechanisms Generate Short-Term Modifications of Synaptic Effectiveness in Prepositus Hypoglossi Neurons

    Get PDF
    To maintain horizontal eye position on a visual target after a saccade, extraocular motoneurons need a persistent (tonic) neural activity, called "eye-position signal," generated by prepositus hypoglossi (PH) neurons. We have shown previously in vitro and in vivo that this neural activity depends, among others mechanisms, on the interplay of glutamatergic transmission and cholinergic synaptically triggered depolarization. Here, we used rat sagittal brainstem slices, including PH nucleus and paramedian pontine reticular formation (PPRF). We made intracellular recordings of PH neurons and studied their synaptic activation from PPRF neurons. Train stimulation of the PPRF area evoked a cholinergic-sustained depolarization of PH neurons that outlasted the stimulus. EPSPs evoked in PH neurons by single pulses applied to the PPRF presented a short-term potentiation (STP) after train stimulation. APV (an NMDA-receptor blocker) or chelerythrine (a protein kinase-C inhibitor) had no effect on the sustained depolarization, but they did block the evoked STP, whereas pirenzepine (an M1 muscarinic antagonist) blocked both the sustained depolarization and the STP of PH neurons. Thus, electrical stimulation of the PPRF area activates both glutamatergic and cholinergic axons terminating in the PH nucleus, the latter producing a sustained depolarization probably involved in the genesis of the persistent neural activity required for eye fixation. M1-receptor activation seems to evoke a STP of PH neurons via NMDA receptors. Such STP could be needed for the stabilization of the neural network involved in the generation of position signals necessary for eye fixation after a saccade

    Role of Cerebellar Interpositus Nucleus in the Genesis and Control of Reflex and Conditioned Eyelid Responses

    Get PDF
    The role of cerebellar circuits in the acquisition of new motor abilities is still a matter of intensive debate. To establish the contribution of posterior interpositus nucleus (PIN) to the performance and/or acquisition of reflex and classically conditioned responses (CRs) of the eyelid, the effects of microstimulation and/or pharmacological inhibition by muscimol of the nucleus were investigated in conscious cats. Microstimulation of the PIN in naive animals evoked ramp-like eyelid responses with a wavy appearance, without producing any noticeable plastic functional change in the cerebellar and brainstem circuits involved. Muscimol microinjections decreased the amplitude of reflex eyeblinks evoked by air puffs, both when presented alone or when paired with a tone as conditioned stimulus (CS). In half-conditioned animals, muscimol injections also decreased the amplitude and damped the typical wavy profile of CRs, whereas microstimulation of the same sites increased both parameters. However, neither muscimol injections nor microstimulation modified the expected percentage of CRs, suggesting a major role of the PIN in the performance of eyelid responses rather than in the learning process. Moreover, the simultaneous presentation of CS and microstimulation in well trained animals evoked CRs similar in amplitude to the added value of those evoked by the two stimuli presented separately. In contrast, muscimol-injected animals developed CRs to paired CS and microstimulation presentations, larger than those evoked by the two stimuli when presented alone. It is concluded that the PIN contributes to the enhancement of both reflex and conditioned eyelid responses and to the damping of resonant properties of neuromuscular elements controlling eyelid kinematics

    A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation

    Get PDF
    An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals

    El examen serológico con muestras de sangre obtenidas en papel de filtro

    Get PDF
    Se ha puesto a punto una técnica de obtención de sangre total en papel filtro para el muestreo serológico de enfermedades de los conejos tales como: Enfermedad Hemorrágica Viral (RHVD); Encephalitozoonosis; Chlamydia psittaci y Mixomatosis. Se propone como alternativa de muestreo para la determinación de anticuerpos, por ser un método sencillo que no requiere muchos cuidados en el envío al laboratorio. Se evaluaron 94 muestras de suero de conejos llegados al laboratorio para el diagnóstico de las entidades antes citadas. Los resultados serológicos de la muestras de sangre total obtenida por venipuntura y en papel filtro, fueron comparados. Los métodos empleados incluyeron: Inmunofluorescencia Indirecta (IFI) para detectar IgG, Carbón inmunoensayo (CIA) e Inhibición de la Hemoaglutinación (IHA) para la evaluación de anticuerpos totales. Los resultados de sensibilidad, especificidad, índice de concordancia y valores predictivos positivos y negativos obtenidos en este trabajo fueron satisfactorios y nos permitieron decir que la toma y el transporte de muestras de sangre en papel de filtro es una técnica útil con sensibilidad y especificidad adecuada para realizar estudios seroepidemiológicos en conejos

    PUK12 ASSESSING THE EFFICIENCY OF INTERSTIM® IN FECAL INCONTINENCE (Fl) IN THE SPANISH SETTING. A COST-EFFECTIVENESS SIMULATION MODEL

    Get PDF

    Pre-ingestive selection capacity and endoscopic analysis in the sympatric bivalves Mulinia edulis and Mytilus chilensis exposed to diets containing toxic and non-toxic dinoflagellates

    Get PDF
    This study investigates the effects of toxic and non-toxic dinoflatellates on two sympatric bivalves, the clam Mulinia edulis and the mussel Mytilus chilensis. Groups of bivalves were fed one of three diets: (i) the toxic paralytic shellfish producing (PSP) Alexandrium catenella + Isochrysis galbana; (ii) the non-toxic Alexandrium affine + Isochrysis galbana and (iii) the control diet of Isochrysis galbana. Several physiological traits were measured, such as, clearance rate, pre-ingestive selection efficiency and particle transport velocity in the gill. The clearance rates of both M. chilensis and M. edulis showed a significant reduction when fed a mixed toxic diet of 50% Alexandrium catenella: 50% Isochrysis galbana. Similarly, when both species of bivalves were fed with the non-toxic diet (50% A. affine: 50% I. galbana), clearance rate was significantly lower compared with a diet of 100% I. galbana. Under all the experimental diets, M. chilensis showed higher clearance rate values, slightly more than double that of M. edulis. M. edulis and M. chilensis have the ability to select particles at the pre-ingestive level, thus eliminating a larger proportion of the toxic dinoflagellate A. catenella as well as the non-toxic A. affine in the form of pseudofaeces. Higher values of selection efficiency were registered in M. edulis than in M. chilensis when exposed to the toxic diet. Similar results were observed when these two species were exposed to the diet containing the non-toxic dinoflagellate, explained by the fact that the infaunal Mulinia edulis is adapted to dealing with larger particle sizes and higher particle densities (Navarro et al., 1993). The lower transport particle velocity observed in the present work for both species, is related to the reduced clearance rate, the higher particle concentration, and the presence of larger, toxic dinoflagellates. In addition, the species differ in their feeding responses to diets, with and without A. catenella or A. affine, largely reflecting their adaptations to different environmental conditions. The results suggest that the presence of a dinoflagellate bloom, whether toxic or non-toxic spp in Yaldad Bay, is likely to have a greater impact on the Mytilus chilensis than the infaunal Mulinia edulis, based on the combined effects on clearance rate, selection efficiency and particle transport velocity

    The inevitable youthfulness of known high-redshift radio galaxies

    Full text link
    Radio galaxies can be seen out to very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio-galaxies must be seen when the lobes are less than 10^7 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result helps to explain many observed trends of radio-galaxy properties with redshift [(i) the `alignment effect' of optical emission along radio-jet axes, (ii) the increased distortion in radio structure, (iii) the decrease in physical sizes, (iv) the increase in radio depolarisation, and (v) the increase in dust emission] without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.Comment: To appear in Nature. 4 pages, 2 colour figures available on request. Also available at http://www-astro.physics.ox.ac.uk/~km
    • …
    corecore