55 research outputs found

    Synthesis and pharmacology of alkanediguanidinium compounds that block the neuronal nicotinic acetylcholine receptor

    Get PDF
    Taking as models the polyamine toxin fraction FTX from the funnel-web spider venom, and the guanidinium moiety of guanethidine, a series of azaalkane-1,omega-diguanidinium salts were obtained. Some of them blocked ion fluxes through the neuronal nicotinic receptors for acetylcholine (nAChR). The blockade was exerted at submicromolar concentrations, suggesting a highly selective interaction with the nAChR. In fact, the active compounds on the nAChR ion channel did not recognize the voltage-dependent Na+ or Ca2+ channels of bovine adrenal chromaffin cells. Therefore, these compounds may be useful tools to clarify the functions of nAChR receptors in the central and peripheral nervous systems.FundaciĂłn RamĂłn Arece

    A stereoselective synthesis of (R)-(-)-rolipram from L-glutamic acid

    Get PDF
    A stereoselective synthesis of (R)-(-)-rolipram from L-glutamic acid is described. The key step is a stereoselective Michael addition of an arylcuprate to a modified pyroglutamic derivative which acts as the template to induce the stereoselectivity. Facile manipulation of the enantiomerically pure Michael product afforded the expected therapeutic agent.We gratefully acknowledge ZAMBON GROUP for studentships (to A. D. and J. S.) and financial support

    Unexpected N-C bond fission of fused N-alkylbenzimidazolium salts. A new approach to pyrido[1,2-a]- or pyridazino[1,6-a]benzimidazoles

    Get PDF
    The reaction of N-carboxymethylpyrido[1,2-a]- and pyridazino[1,6-a]benzimidazolium salts with thionyl chloride resulted in an N-C bond fission, yielding the corresponding pyrido[1,2-a]- and pyridazino[1,6-a]benzimidazoles. A similar dealkylation process was observed when analogous N-propargylic derivatives were treated with Cu (II) acetate.Universidad de Alcal

    Optimized synthesis of di, tri and tetrafused pyridazinium cations

    Get PDF
    By combining two complementary statistical techniques (fractional factorial experimental design and simplex operation) the synthesis of the parent pyrido[1,2-b]-pyridazinium cation has been successfully carried out (the yield was improved from less than 10 to 65%) by basic condensation of 2-methyl-1-aminopyridinium mesitylenesulfonate and [1,4]dioxane-2,3-diol. Using the optimized reaction conditions, other related heterocyclic cations could be prepared, and two interesting examples are now reported.Ministerio de EducaciĂłn y CienciaUniversidad de Alcal

    Thermally activated processes for ferromagnet intercalation in graphene-heavy metal interfaces

    Full text link
    The development of graphene (Gr) spintronics requires the ability to engineer epitaxial Gr heterostructures with interfaces of high quality, in which the intrinsic properties of Gr are modified through proximity with a ferromagnet to allow for efficient room temperature spin manipulation or the stabilization of new magnetic textures. These heterostructures can be prepared in a controlled way by intercalation through graphene of different metals. Using photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we achieve a nanoscale control of thermally activated intercalation of a homogeneous ferromagnetic (FM) layer underneath epitaxial Gr grown onto (111)-oriented heavy metal (HM) buffers deposited, in turn, onto insulating oxide surfaces. XPS and STM demonstrate that Co atoms evaporated on top of Gr arrange in 3D clusters and, upon thermal annealing, penetrate through and diffuse below Gr in a 2D fashion. The complete intercalation of the metal occurs at specific temperatures, depending on the type of metallic buffer. The activation energy and the optimum temperature for the intercalation processes are determined. We describe a reliable method to fabricate and characterize in situ high-quality Gr-FM/HM heterostructures, enabling the realization of novel spin-orbitronic devices that exploit the extraordinary properties of GrThis research was supported by the Regional Government of Madrid through projects P2018/NMT-4321 (NANOMAGCOST-CM) and P2018/NMT-4511 (NMAT2D) and by the Spanish Ministry of Economy and Competitiveness (MINECO) through projects RTI2018-097895-B-C42, FIS2016-78591-C3-1-R, PGC2018-098613-B-C21, PGC2018-093291-B-I00, FIS2015-67367-C2-1-P, and PCIN-2015-111 (FLAGERA JTC2015 Graphene Flagship “SOgraph”). IFIMAC acknowledges support from the ″Maria de Maeztu″ programme for units of Excellence in R&D (MDM-2014-0377). IMDEA Nanoscience is supported by the “Severo Ochoa” programme for the Centres of Excellence in R&D, MINECO (grant number SEV-2016-0686

    Role of targeted therapies in rheumatic patients on COVID-19 outcomes: Results from the COVIDSER study

    Get PDF
    Objectives To analyse the effect of targeted therapies, either biological (b) disease-modifying antirheumatic drugs (DMARDs), targeted synthetic (ts) DMARDs and other factors (demographics, comorbidities or COVID-19 symptoms) on the risk of COVID-19 related hospitalisation in patients with inflammatory rheumatic diseases. Methods The COVIDSER study is an observational cohort including 7782 patients with inflammatory rheumatic diseases. Multivariable logistic regression was used to estimate ORs and 95% CIs of hospitalisation. Antirheumatic medication taken immediately prior to infection, demographic characteristics, rheumatic disease diagnosis, comorbidities and COVID-19 symptoms were analysed. Results A total of 426 cases of symptomatic COVID-19 from 1 March 2020 to 13 April 2021 were included in the analyses: 106 (24.9%) were hospitalised and 19 (4.4%) died. In multivariate-adjusted models, bDMARDs and tsDMARDs in combination were not associated with hospitalisation compared with conventional synthetic DMARDs (OR 0.55, 95% CI 0.24 to 1.25 of b/tsDMARDs, p=0.15). Tumour necrosis factor inhibitors (TNF-i) were associated with a reduced likelihood of hospitalisation (OR 0.32, 95% CI 0.12 to 0.82, p=0.018), whereas rituximab showed a tendency to an increased risk of hospitalisation (OR 4.85, 95% CI 0.86 to 27.2). Glucocorticoid use was not associated with hospitalisation (OR 1.69, 95% CI 0.81 to 3.55). A mix of sociodemographic factors, comorbidities and COVID-19 symptoms contribute to patients'' hospitalisation. Conclusions The use of targeted therapies as a group is not associated with COVID-19 severity, except for rituximab, which shows a trend towards an increased risk of hospitalisation, while TNF-i was associated with decreased odds of hospitalisation in patients with rheumatic disease. Other factors like age, male gender, comorbidities and COVID-19 symptoms do play a role.

    Effect of Gas Atmosphere on Catalytic Behaviour of Zirconia, Ceria and Ceria Zirconia Catalysts in Valeric Acid Ketonization

    Full text link
    [EN] Ketonization of valeric acid, which can be obtained by lignocellulosic biomass conversion, was carried out in a fixed bed flow reactor over ZrO2, 5-20 % CeO2/ZrO2 and CeO2 both under hydrogen and nitrogen stream at 628 K and atmospheric pressure. Regardless gas-carrier 10 wt% CeO2/ZrO2 was found to show higher catalytic activity compared to zirconia per se as well as other ceria modified zirconia while ceria per se exhibited very low catalytic activity. All catalysts provided higher acid conversion in H-2 than in N-2 whereas selectivity to 5-nonanone was insensitive to gas atmosphere. XRD, FTIR, UV-Vis DRS, XPS, HRTEM methods were applied to characterize catalysts in reduced and unreduced states simulating corresponding reaction conditions during acid ketonization. XRD did not reveal any changes in zirconia and ceria/zirconia lattice parameters as well as crystalline phase depending on gas atmosphere while insertion of ceria in zirconia caused notable increase in lattice parameter indicating some distortion of crystalline structure. According to XPS, FTIR and UV-Vis methods, the carrier gas was found to affect catalyst surface composition leading to alteration in Lewis acid sites ratio. Appearance of Zr3+ cations was observed on the ZrO2 surface after hydrogen pretreatment whereas only Zr4+ cations were determined using nitrogen as a gas-carrier. These changes of catalyst's surface cation composition affected corresponding activity in ketonization probably being crucial for reaction mechanism involving metal cations catalytic centers for acid adsorption and COO- stabilization at the initial step.Financial support from the Russian Foundation of Basic Research (RFBR Grant No 11-03-94001-CSIC) is gratefully acknowledged. This work was supported by the Federal Program "Scientific and Educational Cadres of Russia'' (Grant No 2012-1.5-12-000-1013-002). The authors also wish to thank Dr. Evgeniy Gerasimov, Dr. Igor Prosvirin, Dr. Demid Demidov from the Department of Physicochemical Methods at the Boreskov Institute of Catalysis for TEM and XPS measurements.Zaytseva, YA.; Panchenko, VN.; Simonov, MN.; Shutilov, AA.; Zenkovets, GA.; Renz, M.; Simakova, IL.... (2013). Effect of Gas Atmosphere on Catalytic Behaviour of Zirconia, Ceria and Ceria Zirconia Catalysts in Valeric Acid Ketonization. Topics in Catalysis. 56(9-10):846-855. https://doi.org/10.1007/s11244-013-0045-yS846855569-10Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574–577Malhotra SL, Wong RW, Breton MP (2002) Patent US 6461417Westfechtel A, Breucker C, Gutsche B, Jeromin L, Eierdanz H, Baumann H, Schmid KH, Nonnenkamp W (1993) Patent DE 4121117Seipel W, Hensen H, Boyxen N (2001) Patent DE 19958521Tomlinson AD (2001) Patent WO 2001094522Glinski M, Kijenski J, Jakubowski A (1995) Appl Catal A Gen 128:209–217Glinski M, Kijenski J (2000) React Kinet Catal Lett 69:123–128Parida K, Mishra HK (1999) J Mol Catal A Chem 139:73–80Serrano-Ruiz JC, Dumesic JA (2009) Green Chem 11:1101–1104Serrano-Ruiz JC, Dumesic JA (2009) ChemSusChem 2:581–586Leung A, Boocock DGB, Konar SK (1995) Energy Fuels 9:913–920Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ind Eng Chem Res 49:6027–6033Saito N (1996) Patent JP 08198796Yakerson VI, Rubinshtein AM, Gorskaya LA (1970) Patent GB 1208802Graille J, Pioch D (1991) Patent EP 457665Pioch D, Lescure R, Graille J (1995) Ol Corps Gras Lipides 2:386–389Mueller-Erlwein E, Rosenberger B (1990) Chem Ing Tech 62:512–513Corma A, Renz M, Schaverien C (2008) ChemSusChem 1:739–741Bayer (1911) Patent DE 256622Vavon G, Apchie A (1928) Bull Soc Chim 43:667–677Thorpe JF, Kon GAR (1941) Org Synth 1:192–194Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) J Mol Catal A Chem 227:231–239Klein-Homann W (1988) Patent DE 3709765Stubenrauch J, Brisha E, Vohs JM (1996) Catal Today 28:431–441Pulido A, Oliver-Tomas B, Renz M, Boronat M, and Corma A (2013) ChemSusChem 6:141–151Hendren TS, Dooley KM (2003) Catal Today 85:333–351Novothy R, Paulsen S (1963) Patent DE 1158050Kim KS, Barteau MA (1990) J Catal 125:353–375Pestman R, Van Duijne A, Pieterse JAZ, Ponec V (1995) J Mol Catal A 103:175–180Martinez R, Huff MC, Barteau MA (2004) J Catal 222:404–409Matsuoka K, Tagawa K (1985) Patent JP 61207354Shutilov AA, Simonov MN, Zaytseva YuA, Zenkovets GA, and Simakova IL (2013) Kinet Catal 54:184–192Kuriacose JC, Swaminathan R (1969) J Catal 14:348–354Swaminathan R, Kuriacose JC (1970) J Catal 16:357–362Cressely J, Farkhani D, Deluzarche A, Kiennemann A (1984) Mater Chem Phys 11:413–431Kuriacose JC, Jewur SS (1977) J Catal 50:330–341Renz M, Corma A (2004) Eur J Org Chem 2004:2036–2039Taimoor AA, Favre-Reguillon A, Vanoye L, Pitault I (2012) Catal Sci Technol 2:359–363Kustov LM (1997) Top Catal 4:131–144Emmanuel NM (1978) Usp Khim 8:1329–1396Kaspar J, Fornasiero P (2002) In: Trovarelli A (ed) Catalysis by ceria and related materials. Imperial College Press, LondonReddy DD, Chowdhury B, Smirniotis PG (2001) Appl Catal A Gen 211:19–30Rango R, Kaspar G, Meriani S, di Monte R, Graziani M (1994) Catal Lett 24:107–112Rao G, Sahu H (2001) Proc Indian Acad Sci (Chem Sci) 113:651–658Navío JA, Hidalgo MC, Colón G, Botta SG, Litter MI (2001) Langmuir 17:202–210Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang JS (2007) Appl Catal A Gen 317:1–10Kaneko H, Taku S, Tamaura Y (2011) Sol Energy 85:2321–2330Maia TA, Assaf JM, Assaf EM (2012) Mater Chem Phys 132:1029–1034Zhou HP, Si R, Song WG, Yan CH (2009) J Solid State Chem 182:2475–2485Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481–12488Hadjivanov KI, Vayssilov GN (2002) Adv Catal 47:307–511Vivier L, Duprez D (2010) ChemSusChem 3:654–678Vidruk R, Landau MV, Herskowitz M, Ezersky V, Goldbourt A (2011) J Catal 282:215–227Binet C, Daturi M, Lavalley JC (1999) Catal Today 50:207–225Conesa J (1995) Surf Sci 339:337–35

    Preparation and Physicochemical Properties of ZrO 2

    No full text

    Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2

    No full text
    The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subsequently, Au or Pt particles were photodeposited in both unmodified TiO2 and TiO2(G) obtaining Au-TiO2, Pt-TiO2, Au-TiO2(G), and Pt-TiO2(G) materials. The photoactivity of the materials was evaluated in the phenol photodegradation under simulated solar radiation. Pt-TiO2 showed the greatest degree of photoactivity improvement in comparison with TiO2 and TiO2-P25. The dry-soft grinding process led to a high photocatalytic activity of TiO2(G) that was similar to Pt-TiO2 activity as consequence of a slight increase in the crystallinity in TiO2(G) due to an additional anatase formation in comparison with TiO2. However, further photocatalytic improvement in TiO2(G) were not achieved with the addition of Au or Pt. Therefore, the dry-soft grinding treatment and noble metal deposition led to similar improvements in the photocatalytic activity of TiO2 for phenol oxidation. © 2019 IOP Publishing Ltd
    • 

    corecore