8,343 research outputs found

    The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    Get PDF
    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task. © 2014 Balser, Lorey, Pilgramm, Naumann, Kindermann, Stark, Zentgraf, Williams and Munzert

    Damage estimation of subterranean building constructions due to groundwater inundation – the GIS-based model approach GRUWAD

    Get PDF
    The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels

    Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Full text link
    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure

    Evolution of a mafic volcanic field in the central Great Basin, south central Nevada

    Get PDF
    This is the published version. Copyright 2012 American Geophysical Union. All Rights Reserved.Evolution of a mafic volcanic field is investigated through a study of Pliocene age rocks in the Reveille Range in south central Nevada. Pliocene activity began with the eruption of relatively abundant hawaiite (episode 1, 5–6 Ma), which was followed by trachytic volcanism (4.3 Ma) and by a second episode of lower-volume hawaiite and basanite (episode 2, 3.0–4.7 Ma). Incompatible elements indicate an asthenospheric source. Isotopically, episode 2 basalts cluster around 87Sr/86Sr = 0.7035 and εNd = +4.2, but episode 1 samples vary to high 87Si/86Sr (up to 0.7060) over a narrow range of εNd (+0.8 to +4.5). Trachytic rocks (MgO ∼ 0.5%) are isotopically akin to the episode 1 basalts. Geochemical variation requires the addition of a crustal component (high 87Sr/86Sr, Sr/Nd, Pb/La, low εNd) to the episode 1 hawaiites and trachytic samples, probably by assimilation of carbonate-rich sedimentary wall rock. The volcanic field developed in at least two eruptive cycles of approximately equal duration. Basanites (deeper and lower percentage melts) appear only in the younger episode. Eruptive episodes were apparently linked to separate melting events in the mantle. Through time, basalts were produced in diminishing volumes by lower percentage melting, magma generation and storage was at greater depths, and magma ascent was at higher velocities. Spatially, the melting anomalies were large in the Pliocene but progressively diminished in size so that by Pleistocene time, volcanism was restricted to a small area near the northern end of the initial outbreak

    Progression of myopathology in Kearns-Sayre syndrome

    Get PDF
    We report on the progression of myopathology by comparing two biopsies from a patient with a Kearns-Sayre-Syndrome. The first biopsy was taken in 1979 and showed 10% ragged-red fibers. Myopathic changes were slight including internal nuclei and fiber splitting in 10% of the fibers. Electron microscopy revealed typical mitochondrial abnormalities with regard to number and shape. In 1989 a second biopsy was performed for an extended analysis of mitochondrial DNA. This time less than 5% of all fibers were ragged-red. Severe myopathic changes could be detected which so far has rarely been reported in mitochondrial cytopathy

    Integration of Acoustic Neutrino Detection Methods into ANTARES

    Get PDF
    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.Comment: 6 pages, 5 figures, to appear in the proceedings of the International ARENA Workshop, May 28-30th, 2006, University of Northumbri

    Predicting early psychiatric readmission with natural language processing of narrative discharge summaries

    Get PDF
    The ability to predict psychiatric readmission would facilitate the development of interventions to reduce this risk, a major driver of psychiatric health-care costs. The symptoms or characteristics of illness course necessary to develop reliable predictors are not available in coded billing data, but may be present in narrative electronic health record (EHR) discharge summaries. We identified a cohort of individuals admitted to a psychiatric inpatient unit between 1994 and 2012 with a principal diagnosis of major depressive disorder, and extracted inpatient psychiatric discharge narrative notes. Using these data, we trained a 75-topic Latent Dirichlet Allocation (LDA) model, a form of natural language processing, which identifies groups of words associated with topics discussed in a document collection. The cohort was randomly split to derive a training (70%) and testing (30%) data set, and we trained separate support vector machine models for baseline clinical features alone, baseline features plus common individual words and the above plus topics identified from the 75-topic LDA model. Of 4687 patients with inpatient discharge summaries, 470 were readmitted within 30 days. The 75-topic LDA model included topics linked to psychiatric symptoms (suicide, severe depression, anxiety, trauma, eating/weight and panic) and major depressive disorder comorbidities (infection, postpartum, brain tumor, diarrhea and pulmonary disease). By including LDA topics, prediction of readmission, as measured by area under receiver-operating characteristic curves in the testing data set, was improved from baseline (area under the curve 0.618) to baseline+1000 words (0.682) to baseline+75 topics (0.784). Inclusion of topics derived from narrative notes allows more accurate discrimination of individuals at high risk for psychiatric readmission in this cohort. Topic modeling and related approaches offer the potential to improve prediction using EHRs, if generalizability can be established in other clinical cohorts

    Integration of Acoustic Detection Equipment into ANTARES

    Full text link
    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.Comment: 5 pages, 1 figure, to appear in the proceedings of the 1st International ARENA Workshop, May 17-19th, 2005, DESY Zeuthen (Germany
    corecore