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Evolution of a mafic volcanic field in the central

Great Basin, south central Nevada
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ABSTRACT. Evolution of a mafic volcanic field is investigated through a study of Pliocene
age rocks in the Reveille Range in south central Nevada. Pliocene activity began with the
eruption of relatively abundant hawaiite (episode 1, 5-6 Ma), which was followed by trachytic
volcanism (4.3 Ma) and by a second episode of lower-volume hawaiite and basanite (episode 2,
3.0-4.7 Ma). Incompatible elements indicate an asthenospheric source. Isotopically, episode 2
basalts cluster around 87Sr/86Sr=0.7035 and gng=+4.2, but episode 1 samples vary to high
87Sr/86Sr (up to 0.7060) over a narrow range of £yq (+0.8 to 44.5). Trachytic rocks (MgO0~0.5%)
are isotopically akin to the episode 1 basalts. Geochemical variation requires the addition of a
crustal component (high 87Sr/86Sr, St/Nd, Pb/La, low gyq) to the episode 1 hawaiites and
trachytic samples, probably by assimilation of carbonate-rich sedimentary wall rock. The volcanic
field developed in at least two eruptive cycles of approximately equal duration. Basanites (deeper
and lower percentage melts) appear only in the younger episode. Eruptive episodes were apparently
linked to separate melting events in the mantle. Through time, basalts were produced in
diminishing volumes by lower percentage melting, magma generation and storage was at greater
depths, and magma ascent was at higher velocities. Spatially, the melting anomalies were large in
the Pliocene but progressively diminished in size so that by Pleistocene time, volcanism was
restricted to a small area near the northern end of the initial outbreak.

Introduction

The study of Miocene and Pliocene age mafic volcanic rocks
associated with Cenozoic crustal extension in the western
United States continues to provide insight into a variety of
geologically important processes and systems. These include
lithospheric-scale tectonic features of rifting on continental
crust, important aspects of the crust-mantle geochemical
system, and clues to the nature of magmatic differentiation and
the genesis of igneous rocks in the continental rift
environment [e.g., Leeman, 1982; Menzies et al., 1983;
Fitton et al., 1988; Glazner et al., 1991; Glazner and Farmer,
1992; Bradshaw et al., 1993].

Previous and ongoing studies have shown that there is a
twofold geochemical division among Pliocene and younger
mafic volcanic rocks in the Basin and Range region [Menzies
et al., 1983; Fitton et al., 1988; Ormerod et al., 1988;
Rogers et al., 1995]. This twofold division is most often
interpreted to reflect compositionally distinct sources in the
asthenospheric and lithospheric mantle [see also Leeman,
1970; Hedge and Noble, 1971; Leeman, 1982; Fitton et al.,
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1988; Farmer et al., 1989]. The assimilation of continental
crust is regarded by most workers to be of minor petrogenetic
importance [e.g., Leeman, 1982; Menzies et al., 1983; Fitton
et al., 1988], though there are cases where crustal assimilation
is thought to have been a primary control over Basin and
Range basalt geochemistry [e.g., Glazner et al., 1991, Glazner
and Farmer, 1992].

End-members in the geochemical spectrum of Basin and
Range basalts are well represented in mafic volcanic rocks that
occur within the NNE trending zone of Pliocene and younger
mafic volcanism that extends from Death Valley on the south,
to the Pancake Range and Lunar Crater Volcanic Field on the
north (Figure 1). This is the Death Valley-Pancake Range
basalt zone of Vaniman et al. [1982] and Farmer et al. [1989].
Basalts from the central part of this zone in the area around
Crater Flat (southern Nevada province of Menzies et al. [1983])
are among the most isotopically enriched in the region
(8751/868r ~ 0.707, eng < -8.5 [see Farmer et al., 1989;
Livaccari and Perry, 1993]) and have all of the major and trace
element features that characterize basaltic rocks derived from
the lithospheric mantle (hypersthene-normative with low
FeO*, TiO,, Rb/Ba, and Ti/Hf and high La/Ta and Ba/Nb [see
Fitton et al., 1988]). In contrast, basaltic rocks from the
northern end of the zone, in the Reveille and Pancake ranges
(including the Lunar Crater Volcanic Field), are isotopically
depleted (87Sr/86Sr ~ 0.7035, €nq > +3 [see Farmer et al.,
1989; Foland and Bergman, 1992]) and have major and trace
element features like average ocean island basalt (nepheline-
normative with high FeO*, TiO,, Ti/Hf, and Rb/Ba and low
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Figure 1. Distribution of basaltic volcanic rocks less than approximately 8 m.y. old in the western and
central Great Basin of central and southwestern Nevada and southeastern California. Death Valley-Pancake
Range basalt zone from Vaniman et al. [1982] and Farmer et al. [1989]. Modified from Luedke and Smith

[1981.

La/Ta and Ba/Nb [see Fitton et al., 1988, 1991]). Basalts from
the Reveille and Pancake range area are generally regarded as
the asthenospherically derived end-member in the region {e.g.,
Fitton et al., 1988; Farmer et al., 1989].

In this paper we examine the geology and geochemistry of
Pliocene age mafic volcanic rocks in the Reveille Range
(Figure 1). We compare the Pliocene age Reveille Range rocks
to Pleistocene age basaltic rocks from the Lunar Crater
Volcanic field to the north [Bergman, 1982; Lumetal., 1989;

Foland and Bergman, 1992] and from the Crater Flat area to the
south [Vaniman et al., 1982; Farmer et al., 1989; Bradshaw
and Smith, 1994]. Two broadly different themes are developed.
First, the data are interpreted within the cortext of a changing
source chemistry for the Pliocene volcanic rocks, with
emphasis on the addition of a crustal component to the oldest
of the basalts in the Reveille Range area. Second, the data are-
interpreted in the context of volcanic field evolution, with
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Figure 2. Geologic map of Pliocene volcanic rocks

in the Reveille Range of south central Nevada (see also

Figure 1). Mapping is modified slightly from that of Naumann et al. [1991]. Seec also Martin and Naumann

[1995].

emphasis on time-space-compositional trends as they relate to
magma evolution in the mantle and crust.

Location, Volcanic Stratigraphy,
and Petrography

Pliocene and Pleistocene age basalts of the Reveille Range
and Pancake Range (including the Lunar Crater Volcanic Field)
constitute the largest volume of Late Cenozoic mafic volcanic

rocks in the central Great Basin of the western United States.
This area lies along the axis of geophysical symmetry outlined
by Eaton et al. [1978] for the central Great Basin, and is
isolated from the well-developed volcanic fields of the Sierran
Province/Western Great Basin to the west, and the transition
zone/Colorado Plateau to the east [Leeman, 1970, 1982;
Menzies et al., 1983; Fitton et al., 1988].

Geologic mapping and K-Ar dating in the Reveille Range
and adjacent areas [Naumann et al., 1991; Martin and Naumann,
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Table 1. Rock Names, Partial Norms, Phenocryst Assemblages, and Locations for Reveille Range Samples
Sample Rock Name neph* hyp* Phenocrysist Latitude North  Longitude West  Elevation, feet (m)
Episode I Basalts
R9-1-48 hawaiite 0.0 0.0 plag, olv, trace cpx 38008 116°6.1' 6200 (1890)
R9-3-60 hawaiite 0.5 0.0 plag, olv 379 54.4' 116°7.2' 6690 (2039)
R9-4-61 hawaiite 04 0.0 plag, olv 37959 | 116° 6.9' 6200 (1890)
R8-1-4 hawaiite 34 0.0 plag, olv 380 4.0' 116° 7.7 6340 (1932)
R8-1-17 hawaiite 1.8 0.0 plag, olv 1804 3" 116°7.5' 6100 (1859)
R9-1-56 hawaiite 0.0 54 plag, olv, trace bio, cpx 382 10.6' 116°5.6' 5280 (1609)
RO-1-73 hawaiite 0.0 4.1 plag, olv 380 4.7 116° 13.1' 6950 (2118)
R8-1-37 hawaiite 1.0 0.0 plag, olv, cpx 380 6.2' 1169 8.2 5920 (1804)
R8-1-7 hawatite 35 0.0 plag, olv 38037 116°7.9' 5980 (1823)
R8-1-25 hawaiite 0.6 0.0 plag, olv, trace bio 38031 116° 8.6' 5800 (1768)
R9-2-59 hawaiite 30 0.0 plag, olv 179573 116° 6.0' 5800 (1768)
R8-1-14 hawaiite 0.0 42 plag, olv 38040 116°6.8' 5500 (1676)
RO-1-77 hawaiite 0.0 8.7 plag, olv 37950.7' 116° 12.9' 6000 (1829)
R8-1-29 hawaiite 0.1 0.0 plag, olv 380 5.6' 116°8.7 6000 (1829)
R8-1-39 hawaiite 23 0.0 plag 380 6.9' 116°7.6' 5860 (1786)
R8-1-28 hawaiite 22 0.0 plag, olv, oxd 38057 116°8.1' 5650 (1722)
R9-1-66 hawaiite 03 0.0 plag, trace olv 38996 116° 11.7' 6200 (1890)
Episode 2 Basalts
R8-1-27 basanite 94 0.0 cpx, olv, oxd 38032 116°9.4' 6472 (1973)
R8-1-23 basanite 9.3 0.0 cpx, olv, oxd 38034 116°9.3" 6320 (1926)
R8-1-26 basanite 10.1 0.0 cpx, olv, oxd 38032 116°9.7' 6280 (1914)
R8-1-22 basanite 8.7 0.0 cpx, olv, oxd 38035 116°9.3' 6500 (1981)
R8-1-11 basanite 10.6 0.0 cpx, olv, oxd 38045 116° 8.8' 6320 (1926)
R8-1-30 basanite 7.0 0.0 cpx, olv, plag, oxd 38052 116° 84 6030 (1838)
R9-1-47 basanite 6.4 0.0 olv 380 10.4' 116° 6.4' 5320 (1622)
R9-1-55 basanite 6.1 0.0 plag, olv, oxd 38082 116° 7.7 5540 (1689)
R8-1-13 hawaiite 0.0 0.1 plag, olv, cpx, oxd 380 4.4' 116°7.3' 6120 (1865)
R9-1-46 hawaiite 31 0.0 olv, plag 380 10.5' 116° 6.6' 5455 (1663)
R8-1-32 hawaiite 0.0 04 plag, olv 38022 116°7.0° 5580 (1701)
R9-1-44 hawaiite 2.1 0.0 plag, cpx, oxd, olv 380 7.1 116° 6.0' 5300 (1615)
R8-1-12 hawaiite 04 0.0 olv, plag, cpx, oxd 380 4.25' 116° 7.0' 5930 (1807)
R8-1-19 hawaiite 24 0.0 plag, elv, cpx, oxd 38024 116° 72" 5730 (1747)
R8-1-6 hawaiite 3.7 0.0 plag, olv, oxd, cpx 3804.7 116°7.6' 6160 (1878)
R8-1-18 hawaiite 30 0.0 plag, cpx, olv, oxd 3804 4" 116° 7.4' 6240 (1902)
:8-1-1 hawaiite 32 0.0 plag, olv, oxd, cpx 380 3.6' 116°8.0' 6000 (1829)
Trachytic Rocks

R8-1-16 trachy andesite 26 0.0 plag, kspr, oxd, cpx, trace olv 18035 116°7.6' 5840 (1780)
R8-1-40 trachy andesite 10.6 0.0 no phenocrysts 380 7.7 116°6.1' 5841 (1780)
R9-1-43 trachyte 8.0 0.0 trace plag, ksp, cpx 380 7.75' 116°5.3 5240 (1597)
R9-1-62 trachyte 44 0.0 trace plag, cpx, oxd 380 7.6' 116°6.1' 5700 (1737)
R8-141 trachyte 44 00 plag, kspr, cpx, oxd 38079 116°5.7' 5380 (1640)
R8-1-42 trachyte 5.9 0.0 plag, kspr, cpx, oxd 18076 116°6.1' 5600 (1707)

Abbreviations: nepheline (neph), hypersthene (hyp), plagioclase (plag.), olivine (olv.), clinopyroxene (cpx.), iron-ttitanium oxide (oxd.), biotite

(bio.), potassium feldspar (kspr.) . . ]
*Normative compositions based on Fet / (FeZt + Fe3+) = 0.80.
fPhenocrysts listed in order of decreasing abundance.

1995] indicate that mafic volcanism began in middle to late
Miocene time with scattered eruptions of volumetrically minor
basaltic andesite. The early basaltic andesites occur in the
northwesternmost Reveille Range (Figure 2) and in scattered
locations to the south. Near the town of Rachel (Figure 1) this
unit has been dated at approximately 14 Ma [ Naumann et al.,
1991]. Based on petrographic and chemical similarities, we
anticipate a similar middle to late Miocene age for the early
basaltic andesites in the Reveille Range. Geochemical data on
the Miocene rocks are not presented here, and these rocks will
not be considered further in this work.

Pliocene activity in the Reveille Range commenced with the
eruption of a relatively large volume of alkalic basalt (5.1-5.9
Ma), which was followed by trachytic volcanism (4.3 Ma) and
finally by a second eruptive episode of lower volume basalt
(3.0-4.7 Ma, see Naumann et al. [1991] for information on
dates). These map units are shown in Figure 2 and will be
referred to throughout this paper as (1) the episode 1 basalts,
(2) the trachytic rocks, and (3) the episode 2 basalts.
Petrographic information on these units is summarized below
and in Table 1.

Basalts of episode 1 are the most abundant of the Pliocene
age volcanic rocks in the Reveille Range. They comprise a
minimum volume of approximately 8 km3 (estimate of outcrop
volume) and were erupted from ~52 vents located throughout
the range (Figure 2). Most episode 1 basalts contain
phenocrysts of olivine and plagioclase only (25-35 modal
percent), but some also contain minor phenocrysts of
clinopyroxene, Fe-Ti oxide, and occasionally biotite. Large
phenocrysts (>5 mm) and/or megacrysts (>1 cm) of calcic
feldspar (labradorite) are also common, and these sometimes
occur in glomerocrystic trains that range up to 15 cm in long
dimension. The common presence of biotite in the
groundmass of episode 1 basalts is notable. Alteration
minerals include iddingsite and less commonly serpentine or
bowlingite (both after olivine) and calcite.

In the northeastern Reveille Range, basalts of episode 1 are
overlain by two trachytic dome-like lava flows (~0.1 km3) and
associated pyroclastic surge deposits [see Naumann et al.,
1990]. The trachytic lavas are sparsely phyric (<5 modal
percent) with phenocrysts of sanidine, plagioclase, green-
colored clinopyroxene, Fe-Ti oxides, and occasionally apatite.
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Table 2c. Major and Trace Element Abundances in Reveille Range Trachytic Rocks

R8-1-16 R8-140 R9-1-43 R9-1-62 R8-1-41 R8-1-42

Trachy-andesite Trachy-andesite Trachyte Trachyte Trachyte Trachyte
SiOy 55.77 55.71 58.92 59.74 59.83 60.14
TiOp 1.11 0.44 047 051 045 0.51
AbO3 16.11 1593 16.94 1728 17.35 17.23
Fey03 9.82 6.86 6.74 7.11 6.85 720
MnO 0.20 0.17 0.17 0.18 0.16 0.18
MgO 1.20 047 0.52 047 028 0.38
Ca0O 3.80 4.60 3.62 226 1.97 2,04
NayO 5.53 598 6.25 6.50 6.22 6.58
K70 428 533 5.58 5.24 5383 568
P705 0.30 0.17 0.11 024 0.16 0.18
LOI 0.01 2.57 1.64 0.57 027 1.12
Total 98.13 98.23 100.96 100.10 99.37 101.24
FeO* 8.83 6.17 6.06 6.39 6.16 6.47
Mg# 023 0.15 0.16 0.14 0.09 0.12
Rb 71.2 87.0 90.4 89.6
Th 8.46 9.77 103 10.3
Ba 849 353 364 264
Sr 308 101 78 79
La 62.9 73.0 823 72.6
Ce 130 137 155 150
Nd 69.7 64.8 714 60.9
Sm 14.7 134 13.7 13.6
Eu 3.95 230 2.64 2.46
Tb 237 2.03 1.85 1.89
Yb 5.33 5.11 470 432
Lu 0.75 0.68 0.68 0.60
Y 51.9 480 48.5 459
Ta 485 641 6.46 6.49
Nb 64 84 88 90 76
Hf 16.7 18.2 18.8 18.5
Zr 879 953 947 814
Sc 124 59 6.5 5.8
Cr 19 11 3 16
Ni 1 1 1 1
Zn 129 124 108 102
Co 9 2 2 1

See Table 2a footnotes.

The groundmass in the trachytic rocks is dominated by
feldspar, pyroxene, oxides, and colorless to pale green glass.
Except for the presence of calcite in the groundmass of some
samples, the trachytic rocks are mostly free of alteration
minerals. )
Basalts of episode 2 are the youngest volcanic rocks in the
Reveille Range. They comprise a minimum volume of
approximately 1 km3 and were erupted from 14 vents located
only in the northeastern part of the range (Figure 2). Most
episode 2 basalts contain phenocrysts of plagioclase, olivine,
clinopyroxene, and Fe-Ti oxides, but some samples (which we
classify below as basanites) lack phenocrysts of plagioclase.
Episode 2 basalts are distinguished by the common presence of
large clinopyroxene crystals (phenocrysts or megacrysts)
and/or cognate xenoliths of medium-grain plagioclase-
clinopyroxene-oxide gabbro. At some locations, lavas of
episode 2 also contain phenocrysts and/or megacrysts of
amphibole and abundant ultramafic inclusions (dunite,
harzburgite). Biotite does not occur as a phenocryst phase in
the episode 2 basalts and is less common and less well
developed in the groundmass than in basalts of episode 1.
Alteration minerals are like those in episode 1 basalts, though
calcite appears to be less common in the episode 2 samples.

Geochemistry

Major and trace element data for Reveille Range volcanic
rocks are presented in Tables 2a, 2b, and 2c. Replicate and

standard analyses are in Table 3. Isotopic analyses for
Reveille Range rocks are presented in Table 4, along with new
isotopic data on Pleistocene-age basalts of southern Nevada
Crater Flat area (trace element data for the Crater Flat samples
are presented in Bradshaw and Smith, 1994).

Major Elements

Pliocene basalts of episode 1 (Table 2a) are mildly alkaline
with silica-saturated and undersaturated varieties (Table 1).
Episode 1 basalts have 45.7-49.4% Si0O,, 1.0-2.2% K0, and
total alkalis of 4.3-6.5% (K,0+Najy0, Figure 3 and Table 2a).
They are relatively high in FeO* (9.6%-14.0%) and TiO, (2.5-
3.6%) and have low-to-moderate contents of Al,05 (15.1-
17.4%), MgO (2.6-6.1%), and CaO (6.6-9.4%). Normative
compositions and total alkali contents indicate that the rock
name “hawaiite” is appropriate for all episode 1 basalts (Table
1 and Figure 3; see also MacDonald and Katsura [1964] and Le
Maitre [1989]).

Pliocene basalts of episode 2 (Table 2b) are nearly all
nepheline-normative (Table 1). On average, episode 2 basalts
are therefore slightly more alkaline than episode 1 (i.e., lower
$i0,, Al)O3, and CaO and higher TiO,, FeO*, Na,;O, and Mg0),
but the major element similarities between the stratigraphic
groups are generally more striking than are their differences.
One exception is the subset of episode 2 samples which are
strongly undersaturated (>5% normative nepheline) with <45%
SiO, and/or high total alkali contents (Table 2b and Figure 3).
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Table 3. Data Precision and Accuracy
INAA Replicate INAA USGS Standard XRF USGS Standard
R9-1-47 (n=4) BHVO-1 (n=4) SCO-1 (n=6)
Mean ppm Precision* Mean ppm Precision* Accepted Mean ppm Precision* Accepted

Th 6.38 4.1% 1.13 16.3% 1.08 na na na
Ba 768 3.8% 140 11.5% 139 na na na
Ta 5.27 4.8% 1.24 7.6% 1.23 na na na
Hf 8.97 6.1% 4.68 1.7% 438 na na na
La 62.6 6.1% 15.7 2.8% 15.8 na na na
Ce 123 4.0% 394 11.4% 39.0 na na na
Sm 11.0 5.8% 6.47 2.3% 6.20 na na na
Eu 3.19 3.0% 1.97 5.9% 2,06 na na na
Tb 1.21 2.3% 0.91 12.3% 0.96 na na na
Yb 247 2.9% 1.81 3.8% 2.02 na na na
Lu 0.36 3.4% 0.28 19.8% 0.40 na na na
Sc 16.5 5.7% 309 1.2% 31.8 na na na
Cr 37.8 51% 293. 2.5% 289 na na na
Co 315 10.4% 43.2 2.1% 45,0 na na na
Rb na na na na na 115 4.2% 112
Sr na na na na na 168 6.6% 174
Nb na na na na na 124 2.2% 11.0
Y na na na na na 34.8 2.2% 26.0
Zr na na na na na 157 10.2% 160
Ni na na na na na 38 17.8% 27

* Analytical precision is two standard deviations expressed as a percentage of the mean for repeat analyses of samples and standards.
Other values are in parts per million. Accepted values for the primary INAA standard (NIST 1633 fly-ash) are Th (24.7 ppm), Ba (1420), Ta
(2.00), Hf (7.40), La (84.0), Ce (175), Sm (17.0), Eu (3.70), Tb (2.50), Yb (7.40), Lu (1.12), Sc (39.0), Cr (196), Co (43.0).

These lavas are petrographically distinct in that plagioclase is
generally not an abundant phenocryst phase (Table 1). These
features justify the rock name “basanite” to distinguish them
from the less alkaline and more plagioclase-phyric hawaiite
basalts.

The Reveille Range trachytic rocks (55-62% SiO,) have
total alkalis of 9.8-12.3% (Na;O+K,0) and contain 3-11%
normative nepheline (Figure 3 and Table 1c). Compared to the
Reveille Range basalts, the trachytic rocks have K,O contents
that are higher by a factor of 4 (K,0=4.3-5.8%). The trachytic
rocks are moderate to high in Al,03 (15.9-17.4%) and FeO*
(6.7-9.8%), variably low in TiO; (0.44-1.11%) and CaO (2.0-
4.6%), and very low in MgO (0.4-1.2%). The Reveille Range
trachytic rocks resemble tristanites and other evolved rocks of
the alkaline ocean island basalt (OIB) igneous series [e.g.,
Wilkinson, 1974].

Incompatible Elements

Incompatible element concentrations (Tables 2a-2c) and
interelement ratios are broadly similar for episode 1 and
episode 2 hawaiites, episode 2 basanites, average OIB, and for
Pleistocene age basalts of the Lunar Crater Volcanic field. This
is clear from the average compositions plotted on extended
mid-ocean ridge basalt (MORB)-normalized incompatible
élement diagrams (Figure 4), and from ratio-ratio plots of all
the available samples (Figure 5). The similarity of the
Reveille Range and Lunar Crater data to average OIB contrasts
with that of Pleistocene age basalts from Crater Flat, which
have higher concentrations of Ba, Th, and light rare earth
elements (LREE) but lower relative concentrations of high field
strength elements (HFSE), especially Ta and Ti (Figures 4 and
5).

Important differences among Reveille Range basalts are
revealed by their incompatible and compatible element
concentrations. Nearly all the basanites have higher
concentrations of Sr, La, Th, Zr, and Ta (relative to MgO) than
the hawaiites (Figure 6), and in this way the episode 2
basanites are similar to the youngest basalts of the Lunar
Crater Volcanic Field.

An extended plot of OIB-normalized concentrations (Figure
7) shows again that the Reveille Range basanites have
relatively high concentrations of incompatible elements
compared to the hawaiites. Episode 2 hawaiites have, on
average, higher incompatible element concentrations than
episode 1 hawaiites, but these differences are small compared
to the distinctive basanites. Figure 7 also points out the broad
similarity in interelement ratios among all Reveille Range
basalts. The only clear exception to this is the relative
concentration of Pb (i.e., Pb/La, Pb/Ce) which is substantially
higher in episode 1 hawaiites than in any of the episode 2
samples (hawaiites or basanites).

The rare earth element characteristics of the Reveille Range
basalts are consistent with other incompatible element
features. All of the Reveille Range basalts show an overall
light REE-enriched pattern (Figure 8) with uniformly low
abundances of heavy REE (Yb, Lu) at approximately 8 times
chondritic. On average, the episode 2 basanites have the
highest concentrations of light REE at 100-155 times
chondritic. ~The episode 1 hawaiites have light REE
concentrations of 56-130 times chondrites, and the episode 2
hawaiites fall within a relatively restricted compositional
range with light REE at 66-100 times chondrites (see also
La/Yb versus MgO in Figure 6).

In the Reveille Range trachytic rocks, concentrations of the
most incompatible elements are significantly higher than in
the associated basalts (Figure 7). The highest concentrations
are in Zr (~926 ppm), Hf (~18 ppm), Rb (~83 ppm), and K,O
(5.4 wt %) which range between 2.5 and 3.8 times the
concentrations in the basalts. Concentrations of La (73 ppm),
Nb (82 ppm), Y (49 ppm), and Yb (4.8 ppm) are 1.4-2.4 times
higher than in the basalts. The trachytic rocks have negative
Eu anomalies (Ew/Eu* = 0.54 - 0.83), but their REE patterns are
otherwise parallel to those of the basalts at higher
concentrations (Figure 9). In contrast, concentrations of Ba in
the trachytic rocks (~420 ppm) are similar to or slightly lower
than in the basalts, and concentrations of Sr (~160), P,Os
(0.19 wt %), and TiO, (0.56 wt %) are all substantially lower
(Table 2 and Figure 7).
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Figure 3. Total alkalis versus SiO, for Pliocene age volcanic rocks of the Reveille Range compared with
Pleistocene age basalts from Crater Flat and the Lunar Crater Volcanic Field. Reveille Range rocks designated
here as basanites (solid circles) are distinguished by their relatively low SiO, and high alkali contents and by
petrographic features, especially the absence of plagioclase phenocrysts (see text and Table 1). Reveille
Range data are from Table 2 and unpublished University of Nevada, Las Vegas, data. Crater Flat samples are
Red Cone and Black Cone analyses from Bradshaw and Smith [1994]. Lunar Crater Volcanic Field data are from
Bergman [1982] and Kargel [1987].
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Sr, Nd, and Pb Isotopes

Isotopic compositions of episode 1 and episode 2 basalts
are somewhat variable considering the overall similarity in
their incompatible element features. Episode 1 hawaiites show
a wide range in 87St/86Sr (0.7043 - 0.7061), whereas the range
in episode 2 (basanites and hawaiites) is more restricted
(0.7035 - 0.7037, Figure 10). Neodymium isotopes are also
more variable in basalts of episode 1 than episode 2, though
the differences are not as great as for Sr (Figure 10). A similar
pattern can be seen in the Pb isotope data; most of the episode
2 basalts form a linear trend immediately above the mantle
reference line at high 206Pb/204Pb (~19.2), whereas the
episode 1 basalts scatter from the mantle trend toward high
207Pb/204Pb and high A7/4Pb (Figure 11). The trachytic rocks
in the Reveille Range are also variable (high 87S8r/86Sr and
207Ph/204Pb) and in this regard are like the episode 1 hawaiites
(Figures 10 and 11).

Figure 4. MORB-normalized incompatible element diagram.
Normalizing values and plotting order are from Sun and
McDonough [1989]. (a) Comparison of average Pliocene age
Reveille Range hawaiites (episode 1 and episode 2) to the
average Pliocene age basanite, average Pleistocene age basalt
from the Lunar Crater Volcanic Field [ Bergman, 1982; Kargel,
1987), and average ocean island basalt (OIB from Sun and
McDonough [1989]). (b) Comparison of average Pliocene age
Reveille Range hawaiites (episode 1 and episode 2) to the
average Red Cone and Black Cone analyses from Crater Flat
[Bradshaw and Smith, 1994]. Notice the similarity among
OIB, Lunar Crater, and all the Reveille Range data (Figure 4a),
and contrast those relatively smooth patterns with the spiky
pattern produced by the Crater Flat data (Figure 4b).
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Figure 5. Incompatible element ratio-ratio plots comparing

Pliocene Reveille Range basalts to Pleistocene basalts from
Crater Flat and the Lunar Crater Volcanic Field (locations in
Figure 1). (a) K/Ba versus Rb/Ba; note the similarity of the
Reveille Range the Lunar Crater basalts to oceanic basalt and
the distinctive character (high Ba relative to Rb and K) of the
Crater Flat data. (b) La/Ta versus Ti/Hf; note again the
similarity of the Reveille Range the Lunar Crater basalts to
oceanic basalt and the distinctive character (low relative Ti and
Ta) of the Crater Flat data. Reveille Range data are from Table
1. Lunar Crater data are from Bergman [1982] and Kargel
[1987]. Crater Flat data are Red Cone and Black Cone analyses
from Bradshaw and Smith [1994]. Oceanic basalt data are from
Hofmann and White [1983]. Data regarded as “suspect” by
Hofmann and White (in parentheses in their Table 1) are
excluded.

Petrogenesis

Asthenospheric Basalts With a Component
From the Upper Crust

Pliocene age basalts of episode 1 and episode 2 in the
Reveille Range have incompatible element concentrations and
interelement ratios that are nearly identical to those of average
OIB (Figures 5 and 6). The incompatible element data therefore
indicate that the predominant source for Pliocene basalts in the
Reveille Range was asthenospheric mantle [see also Fitton et
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al., 1988]. The presence of the OIB-type incompatible
element signature in Pleistocene age basalts of the Lunar Crater
Volcanic field [Bergman, 1982; Foland et al., 1987; Lum et
al., 1989] indicates that the mantle source of mafic volcanism
in this part of central Nevada has remained largely unchanged
for the past 5-6 Myr.

In general, the isotopic data for these rocks are consistent
with the incompatible element data and the asthenospheric
source interpretation. The episode 2 samples form a tight
cluster around 87Sr/86Sr~0.7035 and €ng~+4, and most of the
Pb isotopes for the episode 2 rocks fall on a trend immediately
above and parallel to the northern hemisphere reference line
(Figures 10 and 11). Isotopic characteristics of Pleistocene
age basalts in the Lunar Crater Volcanic field [ Bergman, 1982,
Foland et al., 1983; Foland and Bergman, 1992] are like those
of episode 2 and are thus consistent with the asthenospheric
source interpretation.

There are, however, isotopic features of the episode 1
hawaiites (5-6 Ma) that probably do not reflect geochemical
variation within the asthenospheric source. Specifically, the
wide variation in Sr isotopes relative to €yg4 in the episode 1
samples contrasts with the tight cluster of the episode 2 data.
The flat trend in the episode 1 data (shallow negative slope) on
the Nd-Sr isotope diagram (Figure 10) is toward a high Sr/Nd
component and, in this regard, is unlike well-correlated trends
that are generally seen in largely mantle-derived volcanic
systems (e.g., southern Nevada area basalts in Figure 10). The
absence of this radiogenic Sr signature from the younger
basalts in the area (episode 2, Lunar Crater) argues that is not a
feature of the asthenospheric source and must therefore have
been acquired when episode 1 basalts moved through the
lithosphere.

The high 87S1/86Sr and high Sr/Nd features of the radiogenic
component in the episode 1 hawaiites are relatively well
constrained by the data array and concave-downward curvature
of the mixing line and are similar to Sr-Nd components in
modem marine sediment and/or average upper crust (Figure 12).
The high Sr/Nd requirement is particularly important because it
disqualifies enriched lithospheric mantle (or basalts from such
mantle) as likely sources of this component (Figure 12). We
believe therefore that the episode 1 basalts acquired an upper
crustal component through assimilation of wall rock in a
shallow magma chamber. Foland et al. [1991] and Foland and
Bergman [1992] showed that Sr and Nd isotopes in basalts of
the Reveille Range and Pancake Range-Lunar Crater Volcanic
Field are strongly correlated with oxygen isotopes (8!180), and
they too argue for assimilation of crust by the older (Pliocene
age) rocks in the area.

Case for Carbonate Assimilation
in Episode 1 Hawaiites

The isotopic data presented here and from Foland and
Bergman [1992] indicate that the crustal contaminant in the
episode 1 basalts had high 87Sr/86Sr, Sr/Nd, and §180. It must
additionally have had relatively low concentrations of most
other incompatible elements, because although the episode 1
lavas have relatively radiogenic Sr, their overall incompatible
element profile is nearly the same as that for the episode 2 and
Lunar Crater samples (Figures 5 and 6).

One possibility is that the episode 1 lavas were
contaminated by limestone or some other carbonate-rich rock.
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Figure 6. Incompatible elements (Sr, La, Zr, Th, Ta, La/Yb) versus MgO for alkalic basalts of the Reveille
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Figure 7. Average incompatible element concentrations for Reveille Range basalts normalized to average
ocean island basalt of Sun and McDonough [1989]. Average episode 2 basanitic samples includes episode 2
basanites and episode 2 hawaiites with relatively high incompatible element concentrations (see Figure 6).
Notice the similarity for ratios among most elements except Pb which is relatively high in only the episode 1
average (e.g., high Pb/Ce in episode 1 hawaiites).
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Masuda et al. [1973).

Carbonates may have high concentrations of Sr but will
generally have low concentrations of other incompatible
elements. Carbonates also have high 8180 and St/Nd and
thereby have all of the features of the putative contaminant [cf.
Veizer, 1983; Shaw, 1985].

The carbonate contaminant interpretation is supported by
the observation that episode | samples with higher Sr
concentrations also have higher 87Sr/86Sr, Specifically, a plot
of 87Sr/86Sr versus Sr concentration (Figure 13) shows that the
episode 1 samples are scattered around a mixing line between
an evolved basalt composition (Sr=550 ppm, 87Sr/86Sr=
0.7035) and a carbonate assimilant (Sr=850 ppm,87Sr/
86Sr=0.7085). The binary mixing line is equivalent to an
assimilation-fractional crystallization (AFC) model wherein
the bulk distribution coefficient for Sr is 1.0 (bulk Dg,=1.0 [see
DePaolo, 1981]). The data are somewhat scattered but are
largely encompassed by AFC calculations using Dg, between
0.85 and 1.15 (Figure 13). There is no systematic change in
Sr concentration over the range of MgO (2.7-6.1%) and Al,04
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Figure 9. Chondrite-normalized rare earth element

concentrations for Reveille Range trachytic rocks compared
with basalts (data from Table 1).

La
See also

(15.1-17.4%) contents in episode 1 basalts, suggesting that
Dg, = 1.0 +/- 0.15 is appropriate.

Strontium isotopes in the episode 1 hawaiites also appear to
be correlated with SiO, content (Figure 14), and this may also
reflect an AFC control over 87S1/86Sr. There are, however, no
clear correlations between 87Sr/86Sr and other general
indicators of crystal fractionation (e.g., decreasing MgO, CaO,
Ca0/Al,03, increasing Ba, Th, K), but this may in part be
because isotopic analyses are available for hawaiite samples
that are all similarly evolved (MgO 4.5-6.1%).

Mixing calculations indicate that the observed shift in
87Sr/86Sr (from 0.7035 to 0.7060) requires 10-40%
assimilation of a carbonate that contains 850 ppm Sr with
878r/86S8r=0.7085 and Sr/Nd = 85 (Figure 12). This is a
substantial amount of contamination, and it implies that
radiogenic Sr mobilized in the wall rock reactions was
efficiently incorporated into the basaltic melt. A large amount
of Sr may have been liberated in wall rock reactions wherein
Ca-Mg carbonates (with variably high Sr) are replaced by Ca-
Mg silicates (with relatively low Sr).

Minerals formed in a melt-carbonate reaction zone (e.g.,
wollastonite, garnet, Ti-Al-rich pyroxenes, nepheline) are not
observed in the episode 1 basalts, nor do these basalts show
shifts in major element composition that might be anticipated
as a consequence of basalt-limestone interaction (e.g., Ca
enrichment, Si-Al depletion [see Wyllie, 1974]). Detailed
studies of basalt-limestone interaction indicate, however, that
these petrologic consequences of limestone assimilation will
be produced in only a very localized part of a magmatic system.
Specifically, Baker and Black [1980] and Joesten [1977] found
small veins and apophyses of strongly Ca-rich hybridized
basalt in melt-limestone reaction zones, but they concluded
that these melts were produced in only very small volumes
because elements liberated by carbonate breakdown (mostly
Ca) were readily accommodated by crystallization within the
reaction zone [see also Wyllie, 1974].

These studies of basalt-limestone interaction have
reemphasized two important points initially made by Bowen
[1922, 1928] in his classic treatment of wall rock assimila-
tion. These are, first, that the sluggish transfer of heat from the
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Figure 10. Nd -Sr isotope correlation diagram comparing Reveille Range data with basalts from throughout
the southern Nevada area (< 7 m.y. old) and upper crust (as sampled by modern marine sediment). Notice the
tight cluster of episode 2 data (hawaiites and basanites) and the “flat trend” of the episode 1 basalts toward high
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[1990], Walker and Coleman [1991], Feuerbach et al., [1993], Hoffine [1993], Ormerod [1988], and
unpublished University of Nevada, Las Vegas, University of Kansas data. Modern marine sediment data are
from Ben Othman et al. [1989].
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YOGODZINSKI ET AL.: ORIGIN OF GREAT BASIN BASALTS 17,439

1 0 § 1 ] 1 : ] ] 1 1 : 1 1 1 i : 1 ] 1 L]
: Basalt End-member Reveille Range N
- i'::zsg oom Clepisode #1 ]
sd (SrNd=21) Oepisode #2 hawaiite [
- @ episode #2 basanite i
ol mixing with :r
- carbonate .
eNd .
5T — . 1
- mixing with cobome
B . o naf -
| lithospheric basalt End-member -~
.10 L Ne-10ppm |
B Lithospheri¢ End-member (SuNa85) ]
- Sr=1400 ppm -
B Nd=97 ppm "
i (St/Nd=14) i
- 1 5 L 1 1 : L1 1 1 4= | L1 % [l 1 L 1
0.70200 0.70400 0.70600 0.70800 0.71000
87gr 1 865¢

Figure 12. Neodymium-Sr isotope correlation diagram for Reveille Range basalts with binary mixing lines
between low 87Sr1/86Sr episode 2 basalts (hawaiites and basanites) and end-members with compositions of
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episode 1 hawaiite trend well. Crosses on mixing lines are at increments of 10%.

magma to the reaction zone means that energy for wall rock In the case of limestone assimilation, this means that Ca
assimilation will generally come from crystallization within liberated by carbonate breakdown will generally be crystallized
the reaction zone itself and, second, that elements mobilized as clinopyroxene within or near to the basalt-limestone
by melt-wall rock reactions will generally be accommodated by reaction zone [Joesten, 1977; Baker and Black, 1980]. So
solid solution in minerals crystallizing in the reaction zone. basaltic lavas erupted from a magma system that interacted
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Figure 13. Sr isotopes versus Sr concentration and assimilation-fractional crystallization modeling (AFC
[DePaolo, 1981]) of episode 1 basalts from the Reveille Range. Parameter “r” in AFC calculations is the mass
assimilated divided by the mass crystallized (Ma/Mc). Crosses on AFC curves are at increments of 10%
crystallization.
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increasing SiO, among Reveille Range hawaiites. Data from
Tables 2 and 4.

extensively with limestone are generally not expected to show
anomalous behavior in CaO or other major elements.

For our purposes it is perhaps most interesting that the
strongly hybridized basalts analyzed by Baker and Black
[1980] were enriched in CaO by approximately a factor of 2.4
(over the unhybridized basalts), but were enriched in Sr by up
to a factor of 15 [see Baker and Black, 1980, Table II]. This
profound enrichment in Sr over CaO in the small-volume
hybridized melts provides clear and tangible evidence that Sr
liberated in carbonate breakdown is preferentially excluded
from the Ca-silicate minerals that crystallize in a basalt-
limestone reaction zone. We conclude that in the case of the
episode 1 hawaiites in the Reveille Range such displaced Sr
may have been efficiently incorporated into the basaltic melts.

Assuming that significant Sr may be liberated by melt-
limestone interaction, we turn to the question of how that Sr
was incorporated into the episode 1 hawaiite magmas. Much of
the radiogenic Sr diffusing away from the wall rock reaction
zone may have been scavenged by feldspars crystallizing in
the cumulate mush. Pieces of this mush zone in the form of
megacrystic and large phenocrystic plagioclase are common in
the episode 1 basalts. Aluminum-87Sr/86Sr mixing
relationships indicate, however, that mechanical incorpora-
tion of feldspar from the mush zone cannot account for the
shift in Sr isotope compositions observed in the episode 1
samples (Figure 15).

If radiogenic Sr was not carried into the basaltic melt by
plagioclase crystals, then it must have been transferred from
the reaction zone to the melt largely by diffusion. Other
elements that may move efficiently by diffusion do not appear,
however, to have been as strongly affected as does Sr. There
are no clear relationships between Ba or Ba/La and 87Sr/86Sr,
and correlations between K or K/La and 87Sr/86Sr are weak
despite the fact that the diffusive mobility of K is thought to be
relatively high in systems where basalt is assimilating crustal
rocks [Watson, 1982; Watson and Jurewicz, 1983]. The Pb
data do show a trend toward higher Pb/La with increasing
87S1/86Sr, but one sample nonetheless has very radiogenic Sr
and also low relative Pb (Figure 16). We conclude therefore
that the episode 1 hawaiites were altered by assimilation of a
wall rock that had high concentrations of Sr (and possibly Pb)
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Reveille Range basalts compared with hypothetical Ca-
feldspar with high 87Sr/86Sr. The trend of the mixing line fails
to pass through the episode 1 data indicating that mechanical
incorporation of Ca-feldspar (i.e., plagioclase megacrysts)
with high 87Sr/86Sr cannot explain the Sr isotopic
composition of the episode 1 samples. Strontium
concentration in feldspar used in mixing calculations is 1200
ppm and is similar to the Sr concentration in a labradorite
megacryst analyzed by Bergman [1982]. Only unreasonably
high Sr concentrations for plagioclase (>10,000 ppm) will
bend the mixing line to pass through the episode 1 data.

compared to other incompatible elements (i.e., a carbonate-
rich wall rock).

Other Geologic and Petrographic Support
for the Carbonate Assimilation Model

The olivine + plagioclase phenocryst assemblage in the
episode 1 basalts contrasts with the higher pressure
phenocryst-megacryst-xenolith assemblage present in
younger basalts in the area (see petrographic descriptions
above). The phenocryst assemblage in episode 1 hawaiites is
therefore consistent with evolution in a low-pressure magma
chamber in the upper crust. The explosive eruption of the
highly evolved trachytic rocks isotopically akin to the
episode 1 hawaiites (87Sr/86Sr > 0.7040) probably marked the
cooling and death of that high level magma system.

We know therefore that among Pliocene-Pleistocene basalts
in the area, the episode 1 hawaiites were erupted in the largest
volume (see geologic map in Figure 2), they resided in the
shallowest magma chamber (plagioclase-olivine-dominated
phenocryst assemblage, see Table 1), and they eventually
cooled to produce the most evolved melts (the trachytic rocks).
All of these features are consistent with the model that the
episode 1 hawaiites appear to have experienced contamination
in the upper crust whereas younger basalts in the area (i.e.,
episode 2 and Lunar Crater) do not.

Petrographic support of the assimilation model is also
present. Small phenocrysts of biotite appear in some episode
1 hawaiites but not in basalts of episode 2 (Table 1). Biotite is
also well-developed groundmass phase in the episode 1 basalts
but is much less common in basalts of episode 2. The presence
of groundmass calcite in the Reveille basalts may also be
significant. We have interpreted calcite in episode 1 basalts
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with increasing 87Sr/86Sr. Reveille Range data are from Table 2 and Ben Othman et al. [1989].

as largely alteration-related (see petrographic descriptions
above), but in some cases, groundmass calcite is intergrown
along straight crystal boundaries with biotite and feldspar in
areas where there is no hint of alteration (aside from the
presence of calcite). The textures suggest that some of the
groundmass carbonate could magmatic or deuteric, though on
this point the textural evidence is probably not conclusive.

Perhaps most importantly, quartzo-feldspathic xenoliths
and xenocrysts are not seen in the Reveille Range episode |
hawaiites, even in the presence of clear geochemical evidence
for crustal contamination. In this regard, the Reveille Range
basalts are unlike the Pliocene Colville Mesa basalts of the
Lake Mead Area and certain Miocene age hawaiites in the Basin
and Range of Mexico [Feuerbach et al., 1993; Luhr et al.,
1995]. In these areas, geochemical evidence for crustal
assimilation is supported by abundant petrographic evidence
in the form of gneissic xenoliths and quartz xenocrysts,
presumably from the deep crust.

Finally, it is important to recognize that Paleozoic and late
Precambrian carbonates constitute a great thickness of the
uppermost crust beneath central Nevada (6-12 km [Langenheim
and Larson, 1972]) and that they are therefore the most
probable source of upper crustal contamination in young
basalts in the area. Most of the limestone section has
probably undergone diagenesis and may not therefore have
particularly high Sr concentrations (aragonite is Sr-rich,
calcite and dolomite are not), but the great thickness of
miogeoclinal carbonate in south-central Nevada at least raises
the possibility for the preservation or formation of Sr-rich
carbonate horizons beneath the Reveille Range.

We conclude that available geologic and petrographic data
provide broad support to the idea, developed on the basis of
geochemistry, that the episode 1 basalts in the Reveille Range

experienced significant contamination in the upper crust, and
that younger basalts in the area (episode 2 and Lunar Crater
basalts) generally did not [see also Foland and Bergman,
1992].

Discussion
Alternatives to the Carbonate Assimilation Model

The geochemical variation in the episode 1 lavas constrains
fairly tightly the nature of the high 87Sr/86Sr component in
these rocks and would appear to eliminate the mantle as a
potential source for this signature. The EMII enriched mantle
component, which is widespread in OIB of certain western
Pacific Islands [ Zindler and Hart, 1986], produces a Nd-Sr array
that falls directly over the episode 1 data. However, the
absence of this isotopic signature from episode 2 and Lunar
Crater basalts (which have incompatible element characteris-
tics like those of episode 1) argues that the radiogenic Sr did
not come from the asthenospheric source. Enriched
lithospheric mantle beneath the western United States
generally has low St/Nd and Sr-Nd isotope ratios that produce a
steep negative trend on the Nd-Sr isotope correlation diagram
(e.g., Crater Flat data in Figure 10) which is unlike the trend
produced by the episode 1 data. In addition, the high 87Sr/865r
basalts of episode 1 show no signs of having acquired the
distinctive trace element characteristics of Great Basin
lithospheric mantle (see Figures 4 and 5).

Assimilation of plagioclase-rich rocks in the deep crust may
be another alternative to the carbonate assimilation model
outlined above. Geochemically, an anorthosite would have the
characteristics required of the assimilant (high 87Sr/86Sr,
St/Nd, 8180, low concentrations of other incompatible
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elements), but with no a priori evidence for an anorthosite
body beneath central Nevada, this can only be an ad hoc
interpretation. Glazner et al. [1991] and Glazner and Farmer
[1992] argue that extensive assimilation of gabbroic rocks in
the deep crust may account for diverse isotopic characteristics
in basalts from the Mojave area of southeastern California.
Indeed, some Mojave basalts follow a Sr-Nd isotopic trend
similar to that seen in episode 1 hawaiites from the Reveille
Range. There is, however, no clear relationship between Sr-Nd
isotopes and 8180 in the Mojave basalts [ Glazner et al., 1991,
Figure 10] and in this way they contrast the Reveille Range-
Lunar Crater rocks [ Foland et al., 1991; Foland and Bergman,
1992]. Furthermore, the unusual element-isotope correlations
seen in the Mojave basalts [Glazner et al., 1991, Figure 12] are
absent from the episode 1 hawaiites. We conclude therefore
that the assimilation process that has operated in the genesis
of the Mojave basalts is unlike that which has effected the
episode 1 hawaiites in the Reveille Range.

Postmagmatic alteration might also explain radiogenic Sr
and high 8180 in the episode 1 basalts. One possibility is
that meteoric waters have carried dissolved carbonate dust into
cracks and other openings in the episode 1 basalts (samples
were not leached in acid prior to isotopic analysis). Episode 1
basalts are slightly older, so pedogenic processes would have
had more time to operate on them than on the younger episode
2 rocks. Recall, however, that all of the Reveille Range
basalts are Pliocene in age, so if pedogenic processes have
affected basalt compositions, it is surprising that the
alteration affects are so clearly present in the episode 1 rocks
(4.5-6 m.y. old) but are completely absent from the episode 2
rocks (3-4.5 m.y. old). A second possibility is that alteration
in the episode 1 samples was produced by a hydrothermal
system established following the eruption of the episode 1
basalts and trachytic rocks. If a hydrothermal system were not
established following the eruption of the relatively small
volume episode 2 basalts, then those basalts would have
escaped alteration.

The problem though, with any hydrospheric interpretation
for the origin of the crustal component in episode 1 basalts, is
that it requires that all of the contaminant Sr and Nd be carried
in the relatively small amount of (apparently alteration-
related) calcite that is present in the rocks. The large amount
of contaminant Sr and Nd required by mass balance (10-40%,
see Figure 12), and the small amount of calcite present (less
than ~3%) therefore argue strongly against a hydrospheric
origin for the observed isotopic shifts. In general, we believe
that a magmatic origin is far more likely to mobilize the large
amount of Sr and Nd required to explain the observed isotopic
variation.

Implications for the Evolution of the Volcanic

Field

Geologic, petrographic, and geochemical evidence outlined
above indicates that between 5 and 6 m.y. ago, episode 1
hawaiites in the Reveille Range were contaminated by wall
rock assimilation in an upper crustal magmatic plumbing
system. This high level magma system is interpreted to have
cooled and died 4.5 m.y. ago with the explosive eruption of
trachytic lavas and pyroclastic surges in the northeastern
Reveille Range. The evidence therefore indicates that the
episode 1 hawaiites and the trachytic rocks were part of a
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single eruptive episode and that this episode was 1.0-1.5 Myr
in duration.

Because the episode 2 basalts immediately overlie but are
isotopically distinct from the trachytic rocks and the basalts of
episode 1, we believe that the episode 2 basalts represent the
beginning of a new eruptive episode for the volcanic field. It
is unlikely that episode 2 basalts could have reoccupied the
shallow episode 1 storage system without also showing
isotopic evidence of crustal contamination, so we conclude
that episode 2 eruptions were fed from a separate storage
location. The widespread occurrence of clinopyroxene
phenocrysts and megacrysts in episode 2 basalts indicates that
this storage location was deeper than during episode 1 time.
This is confirmed, at least in part, by the presence of mantle-
derived xenoliths (dunites, harzburgites) and amphibole
megacrysts in some of the episode 2 basanites. These
xenoliths provide good evidence that their host basalts were
stored near the crust-mantle boundary and were erupted rapidly
without a significant period of storage within the shallow
crust.

The presence of basanites among only the episode 2 rocks
may provide further insight into the development of the
volcanic field. Specifically, the episode 2 basanites are more
alkaline (>5% normative nepheline) than the hawaiites,
indicating a greatér depth of melting (higher pressure melts
[O'Hara, 1968; see also Takahashi and Kushiro, 1983; Klein
and Langmuir, 1987]). The basanites also have higher
incompatible element concentrations than the hawaiites
(relative to MgO, Figure 6), and assuming that the mantle
source of Reveille Range hawaiites and basanites was
compositionally similar (an assumption that is strongly
supported by the isotopic data presented here), these higher
incompatible element concentrations imply a lower percentage
melting for the basanites. Other compositional features of the
basanites, including steeper REE patterns (higher La/Yb,
Figure 6) and higher Nag o (Table 2), also point to a low
percentage melting origin for the basanites compared to the
hawaiites. The overall low volume of basanite in the Reveille
Range argues further that these basalts were produced by
smaller percentage melting than the associated hawaiites
which were produced in relatively large volumes, especially
during episode 1 time.

The secular trend toward deeper and lower volume melting
can be extended into the Pleistocene with the formation of the
youngest basalts in the Lunar Crater Volcanic field (Qb-3 units
from the Lunar Crater Volcanic Field [see Scott and Trask,
1971]). These basalts occur in very small volumes, they are
more strongly alkaline (9-14% normative nepheline) than the
Reveille Range basanites, they have high MgO and high
incompatible element contents (Figure 6), and they have
relatively steep REE patterns (high La/Yb, Figure 6). The
youngest Lunar Crater basalts also contain an abundant and
diverse suite of both type I and type II megacrysts and nodules
[Bergman, 1982]. These data clearly require that the youngest
Lunar Crater basalts were formed by low percentage melting of
a relatively deep mantle source and that they traveled from the
mantle to the surface at relatively high velocities.

Comparison of the Reveille Range data with the mapping of
Scott and Trask [1971] in the Pancake Range suggests that
through time, there have been systematic shifts in the
geographical shift distribution of eruptions across the region.
In its early history (3-6 Myr ago), the volcanic field covered a
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Figure 17. Time-space patterns for volcanism in the

Reveille and Pancake ranges from approximately 6 Ma to
present. Based on mapping presented here (Figure 2) and from
Scott and Trask [1971].

broad area that encompassed what are today the Reveille and
Pancake ranges. By the end of the Pliocene and in Pleistocene
time, the area over which basalts were erupting had retreated to
a small area in the north which today is marked by the
distribution of the youthful cones of the Lunar Crater Volcanic
field (Figure 17). It appears that the initial melting anomaly
that produced the volcanic field was large and that subsequent
melting episodes were smaller and centered at the northern end
of the initially large outbreak. These general time-space trends
were also noted by Naumann et al. (1991] and Foland and
Bergman [1992].

Available age information indicates that in the Reveille
Range the volcanic field developed in at least two eruptive
episodes which were apparently both 1.0-1.5 Myr long. The
presence of both hawaiite and basanite within the episode 2
sequence, and the relatively young age for the only basanite
sample that has been dated (3.0 Ma [see Naumann et al.,
1991]), suggests that episode 2 may itself be two separate
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eruptive episodes (first the hawaiites, then the basanites). The
duration of the episode 2 episode is, however, poorly
constrained because there are relatively few radiometric ages
and because many of the 3-4.5 Myr old basalts are located in
the Pancake Range where the Pliocene stratigraphy is less well
established. It may be that the lengths of the eruptive episodes
have changed with time, such that as the volcanic field aged,
eruptive episodes that produced the younger and smaller
volume basalts were shorter than those that produced older,
larger volume episodes. Only a more detailed knowledge of the
Pliocene stratigraphy in the Pancake Range will allow us to
address this aspect of the volcanic field history.

Overall, the volcanic field appears to have developed in
response to spatially and temporally discrete melting events in
the mantle. The possible role of lithospheric extension or
delamination in triggering these melting events cannot,
however, be evaluated without a substantial knowledge of local
and regional structural/tectonic events at a resolution of
approximately 1-2 Myr. The idea that the formation of small
volume mafic volcanic fields may be coupled to specific
tectonic events therefore appears to be beyond our current
understanding of tectonic events for most parts of the Basin
and Range.
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