51 research outputs found

    Ab initio molecular dynamics calculations on reactions of molecules with metal surfaces

    Get PDF
    Reactions on metal surfaces are of scientific interest due to the tremendous relevance of heterogeneous catalysis. Single crystal surfaces under controlled physical conditions are generally employed as a model for the real catalysts, with the aim of improving the fundamental understanding of the adsorption of molecules on metals. In this field, computer simulations have a high potential to help with interpreting experiments as they can provide an atomic-scale movie of a chemical process. The aim of this thesis has been to apply the ab initio molecular dynamics (AIMD) technique to the study of reactions on metal surfaces. The use of AIMD bypasses the need of pre-computing and fitting a potential energy surface, since the forces acting on the nuclei are calculated `on-the-fly' at each time step of the dynamics. The advantage is that statistically accurate reaction probabilities for small molecules on metal surfaces can be calculated including surface temperature effects and lattice recoil without introducing a priori dynamical approximations on the molecular degrees of freedom. Observables derived from the reaction probability, such as the sticking coefficient, the vibrational efficacy, and the rotational alignment parameter, have been calculated and compared to available experimental data for H2+Cu(111), N2+W(110) and CH4+Pt(111).UBL - phd migration 201

    Chemically accurate simulation of a polyatomic molecule-metal surface reaction

    Get PDF
    Seventh Framework Programme (FP7)Theoretical Chemistr

    Investigating the characteristics and correlates of systemic inflammation after traumatic brain injury: the TBI-BraINFLAMM study

    Get PDF
    INTRODUCTION: A significant environmental risk factor for neurodegenerative disease is traumatic brain injury (TBI). However, it is not clear how TBI results in ongoing chronic neurodegeneration. Animal studies show that systemic inflammation is signalled to the brain. This can result in sustained and aggressive microglial activation, which in turn is associated with widespread neurodegeneration. We aim to evaluate systemic inflammation as a mediator of ongoing neurodegeneration after TBI. METHODS AND ANALYSIS: TBI-braINFLAMM will combine data already collected from two large prospective TBI studies. The CREACTIVE study, a broad consortium which enrolled >8000 patients with TBI to have CT scans and blood samples in the hyperacute period, has data available from 854 patients. The BIO-AX-TBI study recruited 311 patients to have acute CT scans, longitudinal blood samples and longitudinal MRI brain scans. The BIO-AX-TBI study also has data from 102 healthy and 24 non-TBI trauma controls, comprising blood samples (both control groups) and MRI scans (healthy controls only). All blood samples from BIO-AX-TBI and CREACTIVE have already been tested for neuronal injury markers (GFAP, tau and NfL), and CREACTIVE blood samples have been tested for inflammatory cytokines. We will additionally test inflammatory cytokine levels from the already collected longitudinal blood samples in the BIO-AX-TBI study, as well as matched microdialysate and blood samples taken during the acute period from a subgroup of patients with TBI (n=18).We will use this unique dataset to characterise post-TBI systemic inflammation, and its relationships with injury severity and ongoing neurodegeneration. ETHICS AND DISSEMINATION: Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (17/LO/2066). Results will be submitted for publication in peer-review journals, presented at conferences and inform the design of larger observational and experimental medicine studies assessing the role and management of post-TBI systemic inflammation
    • …
    corecore