244 research outputs found

    Chiral spin-orbital liquids with nodal lines

    Get PDF
    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia

    Fast and stable method for simulating quantum electron dynamics

    Full text link
    A fast and stable method is formulated to compute the time evolution of a wavefunction by numerically solving the time-dependent Schr{\"o}dinger equation. This method is a real space/real time evolution method implemented by several computational techniques such as Suzuki's exponential product, Cayley's form, the finite differential method and an operator named adhesive operator. This method conserves the norm of the wavefunction, manages periodic conditions and adaptive mesh refinement technique, and is suitable for vector- and parallel-type supercomputers. Applying this method to some simple electron dynamics, we confirmed the efficiency and accuracy of the method for simulating fast time-dependent quantum phenomena.Comment: 10 pages, 35 eps figure

    Mesoscopic Capacitors: A Statistical Analysis

    Full text link
    The capacitance of mesoscopic samples depends on their geometry and physical properties, described in terms of characteristic times scales. The resulting ac admittance shows sample to sample fluctuations. Their distribution is studied here -through a random-matrix model- for a chaotic cavity capacitively coupled to a backgate: it is observed from the distribution of scattering time delays for the cavity, which is found analytically for the orthogonal, unitary, and symplectic universality classes, one mode in the lead connecting the cavity to the reservoir and no direct scattering. The results agree with numerical simulations.Comment: 4 pages (Revtex), 4 PS figures. Minor corrections. New e-mail address: [email protected] [email protected] e-mail address: [email protected]

    A contiuum model for low temperature relaxation of crystal steps

    Full text link
    High and low temperature relaxation of crystal steps are described in a unified picture, using a continuum model based on a modified expression of the step free energy. Results are in agreement with experiments and Monte Carlo simulations of step fluctuations and monolayer cluster diffusion and relaxation. In an extended model where mass exchange with neighboring terraces is allowed, step transparency and a low temperature regime for unstable step meandering are found.Comment: Submitted to Phys.Rev.Let

    Direct Coulomb and Exchange Interaction in Artificial Atoms

    Full text link
    We determine the contributions from the direct Coulomb and exchange interactions to the total interaction in semiconductor artificial atoms. We tune the relative strengths of the two interactions and measure them as a function of the number of confined electrons. We find that electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle state degeneracy, and find that the spin-configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states.Comment: 4 pages, 5 figure

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde
    • …
    corecore