146 research outputs found
Improvements to the APBS biomolecular solvation software suite
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve
the equations of continuum electrostatics for large biomolecular assemblages
that has provided impact in the study of a broad range of chemical, biological,
and biomedical applications. APBS addresses three key technology challenges for
understanding solvation and electrostatics in biomedical applications: accurate
and efficient models for biomolecular solvation and electrostatics, robust and
scalable software for applying those theories to biomolecular systems, and
mechanisms for sharing and analyzing biomolecular electrostatics data in the
scientific community. To address new research applications and advancing
computational capabilities, we have continually updated APBS and its suite of
accompanying software since its release in 2001. In this manuscript, we discuss
the models and capabilities that have recently been implemented within the APBS
software package including: a Poisson-Boltzmann analytical and a
semi-analytical solver, an optimized boundary element solver, a geometry-based
geometric flow solvation model, a graph theory based algorithm for determining
p values, and an improved web-based visualization tool for viewing
electrostatics
EcoliWiki: a wiki-based community resource for Escherichia coli
EcoliWiki is the community annotation component of the PortEco (http://porteco.org; formerly EcoliHub) project, an online data resource that integrates information on laboratory strains of Escherichia coli, its phages, plasmids and mobile genetic elements. As one of the early adopters of the wiki approach to model organism databases, EcoliWiki was designed to not only facilitate community-driven sharing of biological knowledge about E. coli as a model organism, but also to be interoperable with other data resources. EcoliWiki content currently covers genes from five laboratory E. coli strains, 21 bacteriophage genomes, F plasmid and eight transposons. EcoliWiki integrates the Mediawiki wiki platform with other open-source software tools and in-house software development to extend how wikis can be used for model organism databases. EcoliWiki can be accessed online at http://ecoliwiki.net
Modulation of Neutrophil Function by a Secreted Mucinase of Escherichia coli O157∶H7
Escherichia coli O157∶H7 is a human enteric pathogen that causes hemorrhagic colitis which can progress to hemolytic uremic syndrome, a severe kidney disease with immune involvement. During infection, E. coli O157∶H7 secretes StcE, a metalloprotease that promotes the formation of attaching and effacing lesions and inhibits the complement cascade via cleavage of mucin-type glycoproteins. We found that StcE cleaved the mucin-like, immune cell-restricted glycoproteins CD43 and CD45 on the neutrophil surface and altered neutrophil function. Treatment of human neutrophils with StcE led to increased respiratory burst production and increased cell adhesion. StcE-treated neutrophils exhibited an elongated morphology with defective rear detachment and impaired migration, suggesting that removal of the anti-adhesive capability of CD43 by StcE impairs rear release. Use of zebrafish embryos to model neutrophil migration revealed that StcE induced neutrophil retention in the fin after tissue wounding, suggesting that StcE modulates neutrophil-mediated inflammation in vivo. Neutrophils are crucial innate effectors of the antibacterial immune response and can contribute to severe complications caused by infection with E. coli O157∶H7. Our data suggest that the StcE mucinase can play an immunomodulatory role by directly altering neutrophil function during infection. StcE may contribute to inflammation and tissue destruction by mediating inappropriate neutrophil adhesion and activation
Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays
Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6
Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar
The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c.The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range . The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy using data corresponding to an integrated luminosity of 0.7 fb , and at using 2.0 fb . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be .The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c
A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states
A first study of CP violation in the decay modes and , where labels a or meson and labels a or meson, is performed. The analysis uses the LHCb data set collected in collisions, corresponding to an integrated luminosity of 3 fb. The analysis is sensitive to the CP-violating CKM phase through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of using other decay modes
Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state
A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation
Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)
A search for the lepton flavour violating decay is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, .A search for the lepton flavour violating decay τ → μ μ μ is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, .A search for the lepton flavour violating decay is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of of proton-proton collisions at a centre-of-mass energy of and at . No evidence is found for a signal, and a limit is set at confidence level on the branching fraction,
Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region
An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions.An angular analysis of the B → K^{*}^{0} e e decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q) interval between 0.002 and 1.120 GeV /c. The angular observables F and A which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be F = 0.16 ± 0.06 ± 0.03 and A = 0.10 ± 0.18 ± 0.05, where the first uncertainty is statistical and the second systematic. The angular observables A and A which are sensitive to the photon polarisation in this q range, are found to be A = − 0.23 ± 0.23 ± 0.05 and A = 0.14 ± 0.22 ± 0.05. The results are consistent with Standard Model predictions.An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions
- …