44 research outputs found

    Progressive Star Bursts and High Velocities in the Infrared Luminous, Colliding Galaxy Arp 118

    Get PDF
    In this paper we demonstrate for the first time the connection between the spatial and temporal progression of star formation and the changing locations of the very dense regions in the gas of a massive disk galaxy (NGC 1144) in the aftermath of its collision with a massive elliptical (NGC 1143). These two galaxies form the combined object Arp 118, a collisional ring galaxy system. The results of 3D, time-dependent, numerical simulations of the behavior of the gas, stars, and dark matter of a disk galaxy and the stars and dark matter in an elliptical during a collision are compared with multiwavelength observations of Arp 118. The collision that took place approximately 22 Myr ago generated a strong, non-linear density wave in the stars and gas in the disk of NGC 1144, causing the gas to became clumped on a large scale. This wave produced a series of superstarclusters along arcs and rings that emanate from the central point of impact in the disk. The locations of these star forming regions match those of the regions of increased gas density predicted the time sequence of models. The models also predict the large velocity gradients observed across the disk of NGC 1144. These are due to the rapid radial outflow of gas coupled to large azimuthal velocities in the expanding ring, caused by the impact of the massive intruder.Comment: 12 pages in document, and 8 figures (figures are separate from the document's file); Submitted to Astrophysical Journal Letter

    Accretion Shocks in Clusters of Galaxies and their SZ Signature from Cosmological Simulations

    Full text link
    Cold dark matter (CDM) hierarchical structure formation models predict the existence of large-scale accretion shocks between the virial and turnaround radii of clusters of galaxies. Kocsis et al. (2005) suggest that the Sunyaev-Zel'dovich (SZ) signal associated with such shocks might be observable with the next generation radio interferometer, ALMA. We study the three--dimensional distribution of accretion shocks around individual clusters of galaxies drawn from adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) simulations of LCDM (dark energy dominated CDM) models. In relaxed clusters, we find two distinct sets of shocks. One set ("virial shocks"), with Mach numbers of 2.5-4, is located at radii 0.9-1.3 Rvir, where Rvir is the spherical infall estimate of the virial radius, covering about 40-50% of the total surface area around clusters at these radii. Another set of stronger shocks ("external shocks") is located farther out, at about 3 Rvir, with large Mach numbers (~100), covering about 40-60% of the surface area. We simulate SZ surface brightness maps of relaxed massive galaxy clusters drawn from high resolution AMR runs, and conclude that ALMA should be capable of detecting the virial shocks in massive clusters of galaxies. More simulations are needed to improve estimates of astrophysical noise and to determine optimal observational strategies.Comment: 41 pages including 11 figures and 2 tables; ApJ, in pres

    Sum rule for the backward spin polarizability of the nucleon from a backward dispersion relation

    Get PDF
    A new sum rule for γπ\gamma_\pi, the backward spin polarizability of the nucleon, is derived from a backward-angle dispersion relation. Taking into account single- and multi-pion photoproduction in the s-channel up to the energy 1.5 GeV and resonances in the t-channel with mass below 1.5 GeV, it is found for the proton and neutron that [γπ]p[\gamma_\pi]_p = -39.5 +/- 2.4 and [γπ]n[\gamma_\pi]_n = 52.5 +/- 2.4, respectively, in units of 10^{-4} fm^4.Comment: 10 pages, 1 figure, revtex. Submitted to Phys. Lett.

    Constraining Intra-cluster Gas Models with AMiBA13

    Get PDF
    Clusters of galaxies have been used extensively to determine cosmological parameters. A major difficulty in making best use of Sunyaev-Zel'dovich (SZ) and X-ray observations of clusters for cosmology is that using X-ray observations it is difficult to measure the temperature distribution and therefore determine the density distribution in individual clusters of galaxies out to the virial radius. Observations with the new generation of SZ instruments are a promising alternative approach. We use clusters of galaxies drawn from high-resolution adaptive mesh refinement (AMR) cosmological simulations to study how well we should be able to constrain the large-scale distribution of the intra-cluster gas (ICG) in individual massive relaxed clusters using AMiBA in its configuration with 13 1.2-m diameter dishes (AMiBA13) along with X-ray observations. We show that non-isothermal beta models provide a good description of the ICG in our simulated relaxed clusters. We use simulated X-ray observations to estimate the quality of constraints on the distribution of gas density, and simulated SZ visibilities (AMiBA13 observations) for constraints on the large-scale temperature distribution of the ICG. We find that AMiBA13 visibilities should constrain the scale radius of the temperature distribution to about 50% accuracy. We conclude that the upgraded AMiBA, AMiBA13, should be a powerful instrument to constrain the large-scale distribution of the ICG.Comment: Accepted for publication in The Astrophysical Journal, 12 pages, 9 figure

    Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo)

    Get PDF
    Changes in land use/cover are the main drivers of global biodiversity loss, and thus tools to evaluate effects of landscape change on biodiversity are crucial. In this study we integrated several methods from landscape ecology and landscape genetics into a GIS-based analytical framework, and evaluated the impacts of development and forest restoration scenarios on landscape connectivity, population dynamics and genetic diversity of Sunda clouded leopard in the Malaysian state of Sabah. We also investigated the separate and interactive effects of changing mortality risk and connectivity. Our study suggested that the current clouded leopard population size is larger (+26%) than the current carrying capacity of the landscape due to time lag effects and extinction debt. Additionally, we predicted that proposed developments in Sabah may decrease landscape connectivity by 23% and, when including the increased mortality risk associated with these developments, result in a 40–63% decrease in population size and substantial reduction in genetic diversity. These negative impacts could be mitigated only to a very limited degree through extensive and targeted forest restoration. Our results suggest that realignment of roads and railways based on resistance to movement, without including mortality risk, might be misleading and may in some cases lead to decrease in population size. We therefore recommend that efforts to optimally plan road and railway locations base the optimization on effects of development on population size, density and distribution rather than solely on population connectivity

    Fentanyl-induced reward seeking is sex and dose dependent and is prevented by D-cysteine ethylester

    Get PDF
    Introduction: Despite their inclination to induce tolerance, addictive states, and respiratory depression, synthetic opioids are among the most effective clinically administered drugs to treat severe acute/chronic pain and induce surgical anesthesia. Current medical interventions for opioid-induced respiratory depression (OIRD), wooden chest syndrome, and opioid use disorder (OUD) show limited efficacy and are marked by low success in the face of highly potent synthetic opioids such as fentanyl. D-Cysteine ethylester (D-CYSee) prevents OIRD and post-treatment withdrawal in male/female rats and mice with minimal effect on analgesic status. However, the potential aversive or rewarding effects of D-CYSee have yet to be fully characterized and its efficacy could be compromised by interactions with opioid-reward pathology.Methods: Using a model of fentanyl-induced conditioned place preference (CPP), this study evaluated 1) the dose and sex dependent effects of fentanyl to induce rewarding states, and 2) the extent to which D-CYSee alters affective state and the acquisition of fentanyl-induced seeking behaviors.Results: Fentanyl reward-related effects were found to be dose and sex dependent. Male rats exhibited a range-bound dose response centered at 5 µg/kg. Female rats exhibited a CPP only at 50 µg/kg. This dose was effective in 25% of females with the remaining 75% showing no significant CPP at any dose. Pretreatment with 100 mg/kg, but not 10 mg/kg, D-CYSee prevented acquisition of fentanyl seeking in males while both doses were effective at preventing acquisition in females.Discussion: These findings suggest that D-CYSee is an effective co-treatment with prescribed opioids to reduce the development of OUD

    Low-Energy Compton Scattering of Polarized Photons on Polarized Nucleons

    Get PDF
    The general structure of the cross section of γN\gamma N scattering with polarized photon and/or nucleon in initial and/or final state is systematically described and exposed through invariant amplitudes. A low-energy expansion of the cross section up to and including terms of order ω4\omega^4 is given which involves ten structure parameters of the nucleon (dipole, quadrupole, dispersion, and spin polarizabilities). Their physical meaning is discussed in detail. Using fixed-t dispersion relations, predictions for these parameters are obtained and compared with results of chiral perturbation theory. It is emphasized that Compton scattering experiments at large angles can fix the most uncertain of these structure parameters. Predictions for the cross section and double-polarization asymmetries are given and the convergence of the expansion is investigated. The feasibility of the experimental determination of some of the struture parameters is discussed.Comment: 41 pages of text, 9 figures; minor revisions prior to publication in Phys. Rev.
    corecore