76 research outputs found

    Dedifferentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis

    Get PDF
    Nephropathic cystinosis, a lysosomal storage disease caused by mutations in the CTNS gene encoding the lysosomal cystine transporter cystinosin, is characterized by generalized proximal tubule (PT) dysfunction that progresses, if untreated, to end-stage renal disease. The pathogenesis of defective PT cellular transport in nephropathic cystinosis remains unclear. We characterized a recently generated line of C57BL/6 Ctns mice and analyzed endocytic uptake, lysosome function, and dedifferentiation and proliferation markers using primary cultures of PT epithelial cells derived from Ctns−/− and Ctns+/+ littermates. Metabolic studies revealed that Ctns−/− mice show a progressive PT dysfunction characterized by low-molecular-weight (LMW) proteinuria, glucosuria and phosphaturia, before structural damage and in the absence of renal failure. These changes are related to decreased expression of the multi-ligand receptors megalin and cubilin and to increased dedifferentiation (ZONAB transcription factor) and proliferation (PCNA and Cyclin D1) rates. Studies on PT cells derived from Ctns−/− kidneys confirmed cystine overload, with accumulation of enlarged, dysfunctional lysosomes and reduced expression of endocytic receptors reflected by decreased uptake of specific ligands. These changes were related to a loss of integrity of tight junctions with a nuclear translocation of ZONAB and increased proliferation, as observed in Ctns−/− kidneys. These data reveal that the absence of cystinosin in PT cells triggers aberrations of the endolysosomal compartment, transport defects and an abnormal transcription program in the early stage of nephropathic cystinosis. Insights into the early manifestations of cystinosis may offer new targets for intervention, before irreversible renal damag

    Composite Phaseolus vulgaris plants with transgenic roots as research tool

    Get PDF
    Large seeded grain legumes such as the common bean (Phaseolus vulgaris) and cowpea (Vigna unguiculata) are very important crops with seeds that are major protein source for people in developing countries, but their yields and improvement lag behind the economically more important cereals. For research purposes, genetic transformation is a powerful tool to obtain valuable information on gene expression and putative gene functions. In addition, through genetic transformation, candidate genes can be evaluated for their potential in agricultural biotechnology applications, such as resistance against biotic stresses. However, it remains difficult to stable genetically transform large seeded grain legumes such as Phaseolus and cowpea using Agrobacterium tumefaciens. In this paper a system is described to obtain so-called transgenic composite plants from P. vulgaris. These have a transgenic root system, obtained through Agrobacterium rhizogenes transformation of de-rooted seedlings. Their potentials for studies on important processes in the root system will be discussed

    Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching

    Get PDF
    We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/ÎŒm

    Corrosion protection of Cu by atomic layer deposition

    Get PDF
    Atomic layer deposition (ALD) is a vapor phase technique that is able to deposit uniform, conformal thin films with an excellent thickness control at the atomic scale. 18 nm thick Al2O3 and TiO2 coatings were deposited conformaly and pinhole-free onto micrometer-sized Cu powder, using trimethylaluminum and tetrakis(dimethylamido)titanium(IV), respectively, as a precursor and de-ionized water as a reactant. The capability of the ALD coating to protect the Cu powder against corrosion was investigated. Therefore, the stability of the coatings was studied in solutions with different pH in the range of 0-14, and in situ raman spectroscopy was used to detect the emergence of corrosion products of Cu as an indication that the protective coating starts to fail. Both ALD coatings provide good protection at standard pH values in the range of 5-7. In general, the TiO2 coating shows a better barrier protection against corrosion than the Al2O3 coating. However, for the most extreme pH conditions, pH 0 and pH 14, the TiO2 coating starts also to degrade. Published by the AVS

    Le silence saisi par le droit privé

    No full text
    International audienc
    • 

    corecore