41 research outputs found

    Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5

    Get PDF
    Background and Objectives KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants.Methods We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details.Results We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death.Discussion We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.</p

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Different risk-increasing drugs in recurrent versus single fallers: are recurrent fallers a distinct population?

    No full text
    Polypharmacy, and specifically the use of multiple fall-risk-increasing drugs (FRID), have been associated with increased risk of falling in older age. However, it is not yet clear whether the known set of FRIDs can be extrapolated to recurrent fallers, since they form a distinct group of more vulnerable older persons with different characteristics. We aim to investigate which classes of medications are associated with recurrent falls in elderly patients visiting the Emergency Department (ED) after a fall. This study had a cross-sectional design and was conducted in the ED of an academic medical center. Patients who sustained a fall, 65 years or older, and who visited the ED between 2004 and 2010 were invited to fill in a validated fall questionnaire designed to assess patient and fall characteristics (CAREFALL Triage Instrument [CTI]). We translated self-reported medications to anatomical therapeutic chemical (ATC) codes (at the second level). Univariate logistic regression analysis was performed to explore the association between medication classes and the outcome parameter (recurrent fall). Multivariate logistic regression was used to assess the associations after adjustment to potential confounders. In total 2,258 patients participated in our study, of whom 39 % (873) had sustained two or more falls within the previous year. After adjustment for the potential confounders, drugs for acid-related disorders (adjusted odds ratio [aOR] 1.29; 95 % CI 1.03–1.60), analgesics (aOR 1.22; 95 % CI 1.06–1.41), anti-Parkinson drugs (aOR 1.59; 95 % CI 1.02–2.46), nasal preparations (aOR 1.49; 95 % CI 1.07–2.08), ophthalmologicals (aOR 1.51; 95 % CI 1.10–2.09); antipsychotics (aOR 2.21; 95 % CI 1.08–4.52), and antidepressants (aOR 1.64; 95 % CI 1.13–2.37) remained statistically significantly associated with an ED visit due to a recurrent fall. Known FRIDs, such as psychotropic drugs, also increase the risk of recurrent falls. However, we found four relatively new classes that showed significant association with recurrent falls. In part, these classes may act as markers of frailty and comorbidity, or they may reflect differences in the risk factors affecting the older, frailer population that tends to sustain recurrent falls. Further investigation is needed to elucidate causes and ways to prevent recurrent fall

    Changes in diatom, pollen, and chironomid assemblages in response to a recent volcanic event in Lake Galletue (Chilean Andes)

    Get PDF
    Several lakes in Chile are near important volcanic areas where eruption impacts can limit the quality of lacustrine sediments for reconstructing past environmental changes. In this study, we report changes in diatoms, pollen, and chironomids assemblages after a tephra deposition in Lake Galletue (Chilean Andes). A sediment core obtained from Lake Galletue (40 m water depth) was sliced in I cm intervals and subsamples were taken to analyze each proxy. Pb-210 and 137 Cs activities were measured to obtain the geochronology and mineralogical analyses were performed to determine the mineral composition of the tephra. Diatom species composition and productivity were modified when the lake received the tephra; Aulacoseira granulata decreased and was later replaced by Cyclotella af. glomerata. After the tephra input, Aulacoseira granulata abundance increased to pre-disturbance levels and Cyclotella af. glomerata decreased. These changes seem to suggest a momentary increase in lake nutrient levels after the tephra deposition. Chironomid assemblages also decreased in head capsules just after the tephra deposition, but the most important change was the replacement of Ablabesmyia by Parakiefferiella, probably due to the sedimentological changes produced by the input of coarse tephra grains. Furthermore, unlike other studies, chironomid assemblages in Lake Galletue did not show a decrease drastically in diversity within the tephra layer. The pollen analysis indicated that, prior to the volcanic event, the vegetal community was dominated by Nothofagus sp., Araucaria araucana, and Blechnum sp.-type. After the tephra deposition, the same taxa are dominant, indicating that the volcanic event seems not produce changes in the vegetation. Nevertheless, within the tephra layer it is possible to see an increase in Poaceae, which represent - due to the percolation process - the effect of eruption on the vegetation. According to our results, diatoms were the most sensitive proxy for describing the changes produced by tephra deposition into the aquatic ecosystem and, despite the noticeable changes in its sedimentological properties; the lake seems to have a high resilience capacity, allowing it to return to pre-tephra input conditions. (c) 2006 Elsevier GmbH. All rights reserved
    corecore