15 research outputs found

    Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands

    Get PDF
    Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The sensitivity of M. tuberculosis to ethionamide can be artificially enhanced using synthetic ligands of EthR that allosterically inactivate its DNA-binding activity. Comparison of several structures of EthR co-crystallized with various ligands suggested that the structural reorganization of EthR resulting in its inactivation is controlled by a limited portion of the ligand-binding-pocket. In silico simulation predicted that mutation G106W may mimic ligands. X-ray crystallography of variant G106W indeed revealed a protein structurally similar to ligand-bound EthR. Surface plasmon resonance experiments established that this variant is unable to bind DNA, while thermal shift studies demonstrated that mutation G106W stabilizes EthR as strongly as ligands. Proton NMR of the methyl regions showed a lesser contribution of exchange broadening upon ligand binding, and the same quenched dynamics was observed in apo-variant G106W. Altogether, we here show that the area surrounding Gly106 constitutes the molecular switch involved in the conformational reorganization of EthR. These results also shed light on the mechanistic of ligand-induced allosterism controlling the DNA binding properties of TetR family repressors

    Identification d inhibiteurs du symporteur sodium-iode par criblage à haut débit

    No full text
    Ce travail de thèse a été consacré à la recherche d'inhibiteurs du Symporteur Sodium-Iode ou NIS. Le NIS est une protéine membranaire localisée sur la membrane basolatérale des thyrocytes. Il permet le transport de ions iodures du plasma dans le thyrocyte, ce qui constitue la première étape de la biosynthèse des hormones iodées T 3 et T 4 produites par la thyroïde. La campagne de criblage à haut débit, mise au point sur les cellules HEK-293 sur exprimant la protéine NIS, sur une chimiothèque de 16 720 composés a permis de sélectionner 413 composés bloquant l'entrée d'iodures dans les cellules. Des tests de validation ainsi que la caractérisation de ces composés ont finalement permis d'identifier 10 inhibiteurs puissants et spécifiques du NIS humain, du rat et de la souris possédant des ECSO proches du micro-molaire. Un inhibiteur supplémentaire a été identifié en criblant une chimiothèque interne de 320 peptidomimétiques issus de chimie combinatoire. Parallèlement, un criblage orienté d'une chimiothèque d'organotrifluoroborates a permis de caractériser 3 autres inhibiteurs spécifiques du NIS. Un autre composé a été identifié comme activateur d'entrée d'iodures dans les thyrocytes de rats en culture. L'analyse de son mode d'action a permis de suggérer un mécanisme de maintien des ions iodures dans le thyrocyte. La synthèse d'analogues de ce composé a permis d'identifier un composé encore plus actif et aussi de proposer des relations de structure-activité de cette famille de molécules. Enfin, la synthèse de sondes photoactivables a été initiée afin d'identifier le mode d'action de ce composé sur les thyrocytes.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Caracterización de inhibidores de molécula pequeña del simportador de yoduro de sodio

    No full text
    The sodium/iodide symporter (NIS) mediates the active transport of iodide from the bloodstream into thyrocytes. NIS function is strategic for the diagnosis and treatment of various thyroid diseases. In addition, a promising anti-cancer strategy based on targeted NIS gene transfer in non-thyroidal cells is currently developed. However, only little information is available concerning the molecular mechanism of NIS-mediated iodide translocation. Ten small molecules have recently been identified using a high-throughput screening method for their inhibitory effect on iodide uptake of NIS-expressing mammalian cells. In the present study, we analyzed these compounds for their rapid and reversible effects on the iodide-induced current in NIS-expressing Xenopus oocytes. Four molecules almost completely inhibited the iodide-induced current; for three of them the effect was irreversible, for one compound the initial current could be fully re-established after washout. Three molecules showed a rapid inhibitory effect of about 75%, half of which was reversible. Another three compounds inhibited the iodide-induced current from 10 to 50%. Some molecules altered the membrane conductance by themselves, i.e. in the absence of iodide. For one of these molecules the observed effect was also found in water-injected oocytes whereas for some others the iodide-independent effect was associated with NIS expression. The tested molecules show a surprisingly high variability in their possible mode of action, and thus are promising tools for further functional characterization of NIS on a molecular level, and they could be useful for medical applications

    Caracterización de inhibidores de molécula pequeña del simportador de yoduro de sodio

    No full text
    The sodium/iodide symporter (NIS) mediates the active transport of iodide from the bloodstream into thyrocytes. NIS function is strategic for the diagnosis and treatment of various thyroid diseases. In addition, a promising anti-cancer strategy based on targeted NIS gene transfer in non-thyroidal cells is currently developed. However, only little information is available concerning the molecular mechanism of NIS-mediated iodide translocation. Ten small molecules have recently been identified using a high-throughput screening method for their inhibitory effect on iodide uptake of NIS-expressing mammalian cells. In the present study, we analyzed these compounds for their rapid and reversible effects on the iodide-induced current in NIS-expressing Xenopus oocytes. Four molecules almost completely inhibited the iodide-induced current; for three of them the effect was irreversible, for one compound the initial current could be fully re-established after washout. Three molecules showed a rapid inhibitory effect of about 75%, half of which was reversible. Another three compounds inhibited the iodide-induced current from 10 to 50%. Some molecules altered the membrane conductance by themselves, i.e. in the absence of iodide. For one of these molecules the observed effect was also found in water-injected oocytes whereas for some others the iodide-independent effect was associated with NIS expression. The tested molecules show a surprisingly high variability in their possible mode of action, and thus are promising tools for further functional characterization of NIS on a molecular level, and they could be useful for medical applications

    Mechanism of competence activation by the ComRS signalling system in streptococci

    No full text
    In many streptococci, competence for natural DNA transformation is regulated by the Rgg-type regulator ComR and the pheromone ComS, which is sensed intracellularly. We compared the ComRS systems of four model streptococcal species using in vitro and in silico approaches, to determine the mechanism of the ComRS-dependent regulation of competence. In all systems investigated, ComR was shown to be the proximal transcriptional activator of the expression of key competence genes. Efficient binding of ComR to DNA is strictly dependent on the presence of the pheromone (C-terminal ComS octapeptide), in contrast with other streptococcal Rgg-type regulators. The 20 bp palindromic ComR-box is the minimal genetic requirement for binding of ComR, and its sequence directly determines the expression level of genes under its control. Despite the apparent species-specific specialization of the ComR–ComS interaction, mutagenesis of ComS residues from Streptococcus thermophilus highlighted an unexpected permissiveness with respect to its biological activity. In agreement, heterologous ComS, and even primary sequence-unrelated, casein-derived octapeptides, were able to induce competence development in S. thermophilus. The lack of stringency of ComS sequence suggests that competence of a specific Streptococcus species may be modulated by other streptococci or by non-specific nutritive oligopeptides present in its environment

    FRET-Based Sensors Unravel Activation and Allosteric Modulation of the GABA B Receptor

    No full text
    International audienceThe main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), modulates many synapses by activating the G protein-coupled receptor GABAB, which is a target for various therapeutic applications. It is an obligatory heterodimer made of GB1 and GB2 that can be regulated by positive allosteric modulators (PAMs). The molecular mechanism of activation of the GABAB receptor remains poorly understood. Here, we have developed FRET-based conformational GABAB sensors compatible with high-throughput screening. We identified conformational changes occurring within the extracellular and transmembrane domains upon receptor activation, which are smaller than those observed in the related metabotropic glutamate receptors. These sensors also allow discrimination between agonists of different efficacies and between PAMs that have different modes of action, which has not always been possible using conventional functional assays. Our study brings important new information on the activation mechanism of the GABAB receptor and should facilitate the screening and identification of new chemicals targeting this receptor

    Concerted conformational changes control metabotropic glutamate receptor activity

    No full text
    International audienceAllosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands

    Discovery of novel N-phenylphenoxyacetamide derivatives as EthR inhibitors and ethionamide boosters by combining high-throughput screening and synthesis.

    No full text
    In this paper, we describe the screening of a 14640-compound library using a novel whole mycobacteria phenotypic assay to discover inhibitors of EthR, a transcriptional repressor implicated in the innate resistance of Mycobacterium tuberculosis to the second-line antituberculosis drug ethionamide. From this screening a new chemical family of EthR inhibitors bearing an N-phenylphenoxyacetamide motif was identified. The X-ray structure of the most potent compound crystallized with EthR inspired the synthesis of a 960-member focused library. These compounds were tested in vitro using a rapid thermal shift assay on EthR to accelerate the optimization. The best compounds were synthesized on a larger scale and confirmed as potent ethionamide boosters on M. tuberculosis -infected macrophages. Finally, the cocrystallization of the best optimized analogue with EthR revealed an unexpected reorientation of the ligand in the binding pocket.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore