11 research outputs found

    Can cyanobacterial diversity in the source predict the diversity in sludge and the risk of toxin release in a drinking water treatment plant?

    Get PDF
    ABSTRACT: Conventional processes (coagulation, flocculation, sedimentation, and filtration) are widely used in drinking water treatment plants and are considered a good treatment strategy to eliminate cyanobacterial cells and cell-bound cyanotoxins. The diversity of cyanobacteria was investigated using taxonomic cell counts and shotgun metagenomics over two seasons in a drinking water treat- ment plant before, during, and after the bloom. Changes in the community structure over time at the phylum, genus, and species levels were monitored in samples retrieved from raw water (RW), sludge in the holding tank (ST), and sludge supernatant (SST). Aphanothece clathrata brevis, Microcystis aeruginosa, Dolichospermum spiroides, and Chroococcus minimus were predominant species detected in RW by taxonomic cell counts. Shotgun metagenomics revealed that Proteobacteria was the pre- dominant phylum in RW before and after the cyanobacterial bloom. Taxonomic cell counts and shotgun metagenomic showed that the Dolichospermum bloom occurred inside the plant. Cyanobac- teria and Bacteroidetes were the major bacterial phyla during the bloom. Shotgun metagenomics also showed that Synechococcus, Microcystis, and Dolichospermum were the predominant detected cyanobacterial genera in the samples. Conventional treatment removed more than 92% of cyanobac- terial cells but led to cell accumulation in the sludge up to 31 times more than in the RW influx. Coagulation/sedimentation selectively removed more than 96% of Microcystis and Dolichospermum. Cyanobacterial community in the sludge varied from raw water to sludge during sludge storage (1–13 days). This variation was due to the selective removal of coagulation/sedimentation as well as the accumulation of captured cells over the period of storage time. However, the prediction of the cyanobacterial community composition in the SST remained a challenge. Among nutrient parameters, orthophosphate availability was related to community profile in RW samples, whereas communities in ST were influenced by total nitrogen, Kjeldahl nitrogen (N- Kjeldahl), total and particulate phos- phorous, and total organic carbon (TOC). No trend was observed on the impact of nutrients on SST communities. This study profiled new health-related, environmental, and technical challenges for the production of drinking water due to the complex fate of cyanobacteria in cyanobacteria-laden sludge and supernatant

    BTN3A2 Expression in Epithelial Ovarian Cancer Is Associated with Higher Tumor Infiltrating T Cells and a Better Prognosis

    Get PDF
    BTN3A2/BT3.2 butyrophilin mRNA expression by tumoral cells was previously identified as a prognostic factor in a small cohort of high grade serous epithelial ovarian cancer (HG-EOC). Here, we evaluated the prognostic value of BT3.2 at the protein level in specimen from 199 HG-EOC patients. As the only known role of butyrophilin proteins is in immune regulation, we evaluated the association between BT3.2 expression and intratumoral infiltration of immune cells by immunohistochemistry with specific antibodies against BT3.2, CD3, CD4, CD8, CD20, CD68 and CD206. Epithelial BT3.2 expression was significantly associated with longer overall survival and lower risk of disease progression (HR = 0.651, p = 0.006 and HR = 0.642, p = 0.002, respectively) and significantly associated with a higher density of infiltrating T cells, particularly CD4+ cells (0.272, p<0.001). We also observed a strong association between the relative density of CD206+ cells, as evaluated by the ratio of intratumoral CD206+/CD68+ expression, and risk of disease progression (HR = 1.355 p = 0.044, respectively). In conclusion, BT3.2 protein is a potential prognostic biomarker for the identification of HG-EOC patients with better outcome. In contrast, high CD206+/CD68+ expression is associated with high risk of disease progression. While the role of BT3.2 is still unknown, our result suggest that BT3.2 expression by epithelial cells may modulates the intratumoral infiltration of immune cells

    Impact of Stagnation on the Diversity of Cyanobacteria in Drinking Water Treatment Plant Sludge

    No full text
    Health-related concerns about cyanobacteria-laden sludge of drinking water treatment plants (DWTPs) have been raised in the past few years. Microscopic taxonomy, shotgun metagenomic sequencing, and microcystin (MC) measurement were applied to study the fate of cyanobacteria and cyanotoxins after controlled sludge storage (stagnation) in the dark in a full-scale drinking water treatment plant within 7 to 38 days. For four out of eight dates, cyanobacterial cell growth was observed by total taxonomic cell counts during sludge stagnation. The highest observed cell growth was 96% after 16 days of stagnation. Cell growth was dominated by potential MC producers such as Microcystis, Aphanocapsa, Chroococcus, and Dolichospermum. Shotgun metagenomic sequencing unveiled that stagnation stress shifts the cyanobacterial communities from the stress-sensitive Nostocales (e.g., Dolichospermum) order towards less compromised orders and potential MC producers such as Chroococcales (e.g., Microcystis) and Synechococcales (e.g., Synechococcus). The relative increase of cyanotoxin producers presents a health challenge when the supernatant of the stored sludge is recycled to the head of the DWTP or discharged into the source. These findings emphasize the importance of a strategy to manage cyanobacteria-laden sludge and suggest practical approaches should be adopted to control health/environmental impacts of cyanobacteria and cyanotoxins in sludge

    Oxidation to Control Cyanobacteria and Cyanotoxins in Drinking Water Treatment Plants: Challenges at the Laboratory and Full-Scale Plants

    No full text
    The impact of oxidation on mitigation of cyanobacteria and cyanotoxins in drinking water treatment sludge was investigated at the laboratory and treatment plant scales. Two common oxidants, KMnO4 (5 and 10 mg/L) and H2O2 (10 and 20 mg/L) were applied under controlled steady-state conditions. Non-oxidized and oxidized sludge was left to stagnate in the dark for 7 to 38 days. Controlled laboratory trials show that KMnO4 and H2O2 decreased cell counts up to 62% and 77%, respectively. The maximum total MC level reduction achieved after oxidation was 41% and 98% using 20 mg/L H2O2 and 10 mg/L KMnO4, respectively. Stagnation caused cell growth up to 2.6-fold in 8 out of 22 oxidized samples. Microcystin (MC) producer orders as Chroococcales and Synechococcales were persistent while Nostocales was sensitive to combined oxidation and stagnation stresses. In parallel, two on-site shock oxidation treatments were performed in the DWTP’s sludge holding tank using 10 mg/L KMnO4. On-site shock oxidation decreased taxonomic cell counts by up to 43% within 24 h. Stagnation preceded by on-site shock oxidation could increase total cell counts by up to 55% as compared to oxidation alone. The increase of cell counts and mcyD gene copy numbers during stagnation revealed the impact of oxidation/stagnation on cyanobacterial cell growth. These findings show the limitations of sludge oxidation as a strategy to manage cyanobacteria and cyanotoxins in sludge and suggest that alternative approaches to prevent the accumulation and mitigation of cyanobacteria in sludge should be considered

    A large travel-associated outbreak of iatrogenic botulism in four European countries following intragastric botulinum neurotoxin injections for weight reduction, TĂĽrkiye, February to March 2023

    No full text
    International audienceIn March 2023, 34 associated cases of iatrogenic botulism were detected in Germany (30 cases), Switzerland (two cases), Austria (one case), and France (one case). An alert was rapidly disseminated via European Union networks and communication platforms (Food- and Waterborne Diseases and Zoonoses Network, EpiPulse, Early Warning and Response System) and the International Health Regulation mechanism; the outbreak was investigated in a European collaboration. We traced sources of the botulism outbreak to treatment of weight loss in TĂĽrkiye, involving intragastric injections of botulinum neurotoxin. Cases were traced using a list of patients who had received this treatment. Laboratory investigations of the first 12 German cases confirmed nine cases. The application of innovative and highly sensitive endopeptidase assays was necessary to detect minute traces of botulinum neurotoxin in patient sera. The botulism notification requirement for physicians was essential to detect this outbreak in Germany. The surveillance case definition of botulism should be revisited and inclusion of cases of iatrogenic botulism should be considered as these cases might lack standard laboratory confirmation yet warrant public health action. Any potential risks associated with the use of botulinum neurotoxins in medical procedures need to be carefully balanced with the expected benefits of the procedure

    Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation

    Get PDF
    Pre-oxidation can be used against cyanobacteria at the water treatment plant intake to improve cell removal efficiency in down flow processes and reduce cyanotoxins concentrations. In this study, shotgun metagenomic sequencing was used to describe the functional capacity of a cyanobacterial bloom (at Lake Champlain, southern Quebec, Canada) before and after pre-oxidation using Cl2, KMnO4 and H2O2. The bloom samples were associated with two functional profile assemblages: that of August 1st (onset of the bloom) characterized by enrichment of genes related to nutrient uptake and that of August 13th-29th (towards the end of the sampling) associated with competition for resources and repair such as Photosynthesis, Protein metabolism and DNA metabolism. Different functional profile responses to oxidation with Cl2, KMnO4 and H2O2 was also identified as two-time points during the bloom (at the August 1st, and August 29th). On August 1st, chlorinated samples showed a progressive shift in functional profile: starting by acquiring and sequestering nutrient sources (e.g. Iron acquisition, carbohydrates) at low chlorine exposure (CT, concentration X contact time) level, followed by showing a stronger tendency toward dormancy and sporulation genes at high CT. Our results showed that following high CT of H2O2, the relative abundance of the cyanobacterial biomarkers decreased, regardless of the dominant cyanobacterial genus. The toxicity of the bloom before and after oxidation samples was assessed by droplet digital PCR (ddPCR) to measure the mcyD gene. Our results showed significant positive correlation between the mcyD gene copies number and microcystin concentrations in the bloom samples (before the oxidation). However, such correlation was not observed after oxidation. These results suggest that ddPCR can only be used to evaluate bloom toxicity before oxidation

    Testing the Causality between Electricity Consumption, Energy Use and Education in Africa

    No full text
    We investigate the existence of causal relationships between energy consumption and education (enrollment in primary secondary and higher education) for a sample of 16 African countries over the period 1971-2010 (according to availability of countries' data). We use the panel-data approach of KĂłnya (2006), which is based on SUR systems and Wald tests with country specific bootstrap critical values. Our results show that education and energy use are strongly linked in Africa. There is bidirectional causality between primary, secondary and higher education and energy use for several countries. Moreover, electricity consumption plays a crucial role in the energy-education links in Africa.http://deepblue.lib.umich.edu/bitstream/2027.42/132984/1/wp1084.pd

    Tissue CD14+CD8+ T cells reprogrammed by myeloid cells and modulated by LPS

    No full text
    The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability
    corecore