28 research outputs found

    siRNA knockdown of SPHK1 in vivo protects mice from systemic, type-I Allergy.

    Get PDF
    Systemic anaphylaxis is considered to be a typical immediate hypersensitivity response, determined by the activation of immune cells,
via antigen-induced aggregation of IgE-sensitized FcεRI cells. Perhaps most the important cells, in the immediate hypersensitivity responses, are mast cells. We have previously shown that SPHK1 plays a key role in the intracellular signaling pathways triggered by FceRI aggregation on human
mast cells. More recently, we performed a genome-wide gene expression profiling of human mast cells, sensitized with IgE alone, or stimulated by FcεRI aggregation. We found that sphingosine kinase 1 (SPHK1) was one
of genes activated at the earlier stages of mast cell activation, including during sensitization. Moreover, SPHK1 has been shown, by us and others, to be a key player in the intracellular signaling pathways triggered by
several immune-receptors, including fMLP, C5a, and Fcg- and Fcereceptors. Here we have investigated the in vivo role of SPHK1 in allergy, using a specific siRNA to knockdown SPHK1 in vivo. Our results support a role for
SPHK1 in the inflammatory responses that share clinical, immunological, and histological features of type I hypersensitivity. Thus, mice pretreated with the siRNA for SPHK1 were protected from the IgE mediated allergic
reactions including: temperature changes, histamine release, cytokine production, cell-adhesion molecule expression, and immune cell infiltration into the lungs

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Individualized medicine enabled by genomics in Saudi Arabia

    Full text link

    Genome activity profiling of monomeric-IgE and Fc-epsilon-RI-aggregation on human mast cells reveals a complex network of genes involved in inflammatory responses.

    No full text
    Mast cell activation, mediates type-1 allergic responses, one of the most powerful reactions of the immune system. However, mast cells activation is becoming increasingly linked to inflammatory, autoimmunity, and to adaptive immunity by regulating T-cell activation.
Here we analyzed the gene expression pattern in IgE-sensitized and FcεRI aggregation on human mast cells. Our data revealed coordinated changes in gene expression. We observed increased expression of gene-transcripts involved in allergic, innate and adaptive
immune responses. Among the most prominent findings is the increased expression of transcripts encoding for MIP3a, SPARCL1, AREG, IL18, CCL1, TNFRSF9, IL1b, CX3CR1, PTGER3, MIF, MMP12, ADORA3, IL8RB, and other genes involved in innate and cellmediated
immunity. These results represent a substantial advance in our understanding of the genome-wide effects triggered by “passive sensitization” or active stimulation of human mast cells, and how this relate to mast cells involvement not only in allergic
responses but also in innate and adaptive immunity

    The clusterin connectome:emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis

    No full text
    Abstract Introduction: Clusterin is a moonlighting protein that has many functions. It is a multifunctional holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA. Methods: The STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterin associated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA. Results: The top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins. Discussion: Based on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels

    Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia.

    Get PDF
    ObjectiveTo investigate whether patients with behavioral variant frontotemporal dementia (bvFTD) have dysregulation in satiety-related hormonal signaling using a laboratory-based case-control study.MethodsFifty-four participants (19 patients with bvFTD, 17 patients with Alzheimer disease dementia, and 18 healthy normal controls [NCs]) were recruited from a tertiary-care dementia clinic. During a standardized breakfast, blood was drawn before, during, and after the breakfast protocol to quantify levels of peripheral satiety-related hormones (ghrelin, cortisol, insulin, leptin, and peptide YY) and glucose. To further explore the role of patients' feeding abnormalities on hormone levels, patients were classified into overeating and nonovereating subgroups based on feeding behavior during separate laboratory-based standardized lunch feeding sessions.ResultsIrrespective of their feeding behavior in the laboratory, patients with bvFTD, but not patients with Alzheimer disease dementia, have significantly lower levels of ghrelin and cortisol and higher levels of insulin compared with NCs. Furthermore, while laboratory feeding behavior did not predict alterations in levels of ghrelin, cortisol, and insulin, only patients with bvFTD who significantly overate in the laboratory demonstrated significantly higher levels of leptin compared with NCs, suggesting that leptin may be sensitive to particularly severe feeding abnormalities in bvFTD.ConclusionsDespite a tendency to overeat, patients with bvFTD have a hormonal profile that should decrease food intake. Aberrant hormone levels may represent a compensatory response to the behavioral or neuroanatomical abnormalities of bvFTD
    corecore