26 research outputs found

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice

    Full text link
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems

    SCN3A ‐related neurodevelopmental disorder: A spectrum of epilepsy and brain malformation

    Get PDF
    Objective Pathogenic variants in SCN3A , encoding the voltage‐gated sodium channel subunit Nav1.3, cause severe childhood‐onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A ‐related neurodevelopmental disorder. Methods Patients were ascertained via an international collaborative network. We compared sodium channels containing wild‐type vs. variant Nav1.3 subunits co‐expressed with β1 and β2 subunits using whole‐cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK‐293 T cells). Results Of 22 patients with pathogenic SCN3A variants, most had treatment‐resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20; 75%). Many, but not all (15/19; 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4–6 of domains II‐IV. Most pathogenic missense variants tested (10/11; 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. Interpretation Our study defines SCN3A‐ related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in over 75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems

    Assessing groundwater flux from underlying fractured bedrock to the overburden aquifer system, Fredericton, New Brunswick, Canada

    Get PDF
    Fredericton, the capital city of New Brunswick, Canada, draws its water from wells in a semi-confined river valley alluvial aquifer which produce approximately 25,000 m³/day for a population of 50,535 (Statistics Canada, 2007). The water that is produced by the well field comes from either the Saint John River via riverbank induced infiltration, surface infiltration, the underlying fractured bedrock, or a combination of these sources. In the past, lower water supply demands from a smaller population in Fredericton were met from the aquifer system. As a result, the hydrogeology of the fractured sedimentary bedrock, in terms of contribution to the water supply was not addressed in depth. With the increased water supply demand from a growing population and the potential variation in recharge rates to affect groundwater quantity however, the need to understand and estimate the groundwater contribution from the bedrock aquifer has been recognized. A hydrogeological characterization, and 3D numerical model assessment of the Fredericton area, was completed to: 1) determine how the flux would vary under both natural flow and well field pumping conditions; and 2) determine how sensitivity to variations in recharge, would impact the quantity of the groundwater flux from the fractured bedrock to the overburden aquifer. The steady-state (natural flow) and transient (pumping) model simulations indicated the bedrock fluid flux in the well field area was approximately 1000 m³/d and was not greatly affected by changes to recharge or pumping rates. With changes in precipitation or temperature, a possible result of climate change, the resulting hydraulic head and fluid flux in the overburden was more sensitive than that of the bedrock, which represented a more stable fluid flux because of the lower fractured rock mass permeability

    CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity

    Full text link
    CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures

    A Novel Kv7.3 Variant in the Voltage-Sensing S Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and Rescue by β-Hydroxybutyrate.

    No full text
    Pathogenic variants in and , paralogous genes encoding Kv7.2 and Kv7.3 voltage-gated K channel subunits, are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical phenotypes ranging from benign familial neonatal epilepsy (BFNE) to early-onset developmental and epileptic encephalopathy (DEE). variants account for the majority of pedigrees with BFNE and variants are responsible for a much smaller subgroup, but the reasons for this imbalance remain unclear. Analysis of additional pedigrees is needed to further clarify the nature of this genetic heterogeneity and to improve prediction of pathogenicity for novel variants. We identified a BFNE family with two siblings and a parent affected. Exome sequencing on samples from both parents and siblings revealed a novel variant (c.719T>G; p.M240R), segregating in the three affected individuals. The M240 residue is conserved among human Kv7.2-5 and lies between the two arginines (R5 and R6) closest to the intracellular side of the voltage-sensing S transmembrane segment. Whole cell patch-clamp recordings in Chinese hamster ovary (CHO) cells revealed that homomeric Kv7.3 M240R channels were not functional, whereas heteromeric channels incorporating Kv7.3 M240R mutant subunits with Kv7.2 and Kv7.3 displayed a depolarizing shift of about 10 mV in activation gating. Molecular modeling results suggested that the M240R substitution preferentially stabilized the resting state and possibly destabilized the activated state of the Kv7.3 subunits, a result consistent with functional data. Exposure to β-hydroxybutyrate (BHB), a ketone body generated during the ketogenic diet (KD), reversed channel dysfunction induced by the M240R variant. In conclusion, we describe the first missense loss-of-function (LoF) pathogenic variant within the S segment of Kv7.3 identified in patients with BFNE. Studied under conditions mimicking heterozygosity, the M240R variant mainly affects the voltage sensitivity, in contrast to previously analyzed BFNE Kv7.3 variants that reduce current density. Our pharmacological results provide a rationale for the use of KD in patients carrying LoF variants in Kv7.2 or Kv7.3 subunits
    corecore