19 research outputs found

    Efficacy of Vafidemstat in Experimental Autoimmune Encepha-Lomyelitis Highlights the KDM1A/RCOR1/HDAC Epigenetic Axis in Multiple Sclerosis

    Get PDF
    Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases. However, the role of ORY-2001 targeting KDM1A in neuroinflammation remains to be explored. Here, we investigated the effect of ORY-2001 on immune-mediated and virus-induced encephalomyelitis, two experimental models of multiple sclerosis and neuronal damage. Oral ad-ministration of ORY-2001 ameliorated clinical signs, reduced lymphocyte egress and infiltration of immune cells into the spinal cord, and prevented demyelination. Interestingly, ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the inflammatory gene expression signature characteristic ofEAE in the CNS of mice more potently. In addition, ORY-2001 induced gene expression changes con-cordant with a potential neuroprotective function in the brain and spinal cord and reduced neuronal glutamate excitotoxicity-derived damage in explants. These results pointed to ORY-2001 as a promising CNS epigenetic drug able to target neuroinflammatory and neurodegenerative diseases and provided preclinical support for the subsequent design of early-stage clinical trials.This research funded by Oryzon Genomics, S.A. and partially supported by RETOS: (RTC2016-4955-1); EUROSTAR II: EMTherapy (CIIP-20152001/E!9683) and CDTI: EDOTEM (IDI-20180117)

    Corrigendum: MEF2 transcription factors are key regulators of sprouting angiogenesis

    Get PDF
    The above-mentioned article contained three errors in the Supplemental Figures. In Supplemental Figure 3D, both bar graphs are missing labels for the X-axes due to an oversight during figure preparation

    Epigenetic Transcriptional Regulation of the Growth Arrest-Specific gene 1 (Gas1) in Hepatic Cell Proliferation at Mononucleosomal Resolution

    Get PDF
    BACKGROUND: Gas1 (growth arrest-specific 1) gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. METHODOLOGY/PRINCIPAL FINDINGS: Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP) has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real time by quantifying the presence of RNA polymerase II in coding regions (RNApol-ChIP). It has been found that Gas1 is expressed not only in quiescent liver but also at the cell cycle G(1)/S transition. The latter expression peak had not been previously reported. Two nucleosomes, flanking a nucleosome-free region, are positioned close to the transcription start site. Both nucleosomes slide in going from the active to the inactive state and vice versa. Nuc-ChIP analysis of the acquisition of histone epigenetic marks show distinctive features in both active states: H3K9ac and H3K4me2 are characteristic of transcription in G(0) and H4R3me2 in G(1)/S transition. Sequential-ChIP analysis revealed that the "repressing" mark H3K9me2 colocalize with several "activating" marks at nucleosome N-1 when Gas1 is actively transcribed suggesting a greater plasticity of epigenetic marks than proposed until now. The recruitment of chromatin-remodeling or modifying complexes also displayed distinct characteristics in quiescence and the G(1)/S transition. CONCLUSIONS/SIGNIFICANCE: The finding that Gas1 is transcribed at the G(1)/S transition suggests that the gene may exert a novel function during cell proliferation. Transcription of this gene is modulated by specific "activating" and "repressing" epigenetic marks, and by chromatin remodeling and histone modifying complexes recruitment, at specific nucleosomes in Gas1 promoter

    Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice.

    Get PDF
    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics

    Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    No full text
    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics

    Vafidemstat epigenetic immune modulation

    No full text
    Background Vafidemstat (ORY-2001) is a clinical stage inhibitor of the Lysine Specific Demethylase KDM1A in development for treatment of neurodegenerative and psychiatric diseases. KDM1A demethylates H3K4me1/2 and together with the histone deacetylases HDAC1/2, it forms part of co-repressor complexes recruited by zinc finger factors to control transcription. The exact role of KDM1A in neuroinflammation remained to be explored. Methods Compounds were administered p.o. gavage to mice with MOG35-55 induced experimental autoimmune encephalomyelitis or mice infected with Theiler’s murine encephalomyelitis virus. Immune cell infiltration was analyzed by immunohistochemistry. Cytokine and chemokine levels were analyzed by ELISA. Genome wide gene expression in spinal cord and brain were analyzed by two-color microarray analysis and qRT-PCR. Results ORY-2001 improved the clinical score in mouse experimental autoimmune encephalomyelitis and in mice infected with the Theiler’s murine encephalomyelitis virus. The compound reduced lymphocyte egress and infiltration of immune cells in the spinal cord and prevented demyelination. ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the induction of the inflammatory gene expression signature in the central nervous system more potently. Gene expression changes and axonal protection in animals, and protection against glutamate excitoxicity in spinal cord explants support that ORY-2001 has neuroprotective qualities. Conclusions ORY-2001 exerts therapeutic activity in two mouse models of multiple sclerosis. The anti-inflammatory properties of ORY-2001 are being tested in a Phase IIa clinical trial in patients with relapse remitting and secondary progressive multiple sclerosis, and in severely ill COVID-19 patients at risk for acute respiratory distress syndrome.This study was supported by Oryzon Genomics S.A. and by RETOS: (RTC-2016-4955- 1); EUROSTAR II: EMTherapy (CIIP-20152001/E!9683) and CDTI: EDOTEM (IDI20180117).N

    <i>In vivo</i> transfection of mice by HGD with pcDNA3/CAG-HA<i>Gas1</i>.

    No full text
    <p>(A) Immunofluorescence anti-HA on a liver section transfected with pcDNA3/CAG-HAGas1. Nuclei were counterstained with DAPI. (B) Confocal microscopy image of a liver section as that in (A). (C) A magnified confocal microscopy image as in B, to show the deposition of HA-tagged GAS1 into plasma membranes. (D) PCR using primers annealing to the HA tag of the <i>Gas1</i> construct at several times after HGD. As an internal control, a region of the constitutive β-actin gene was also amplified. (E) RT-PCR showing the HA-<i>Gas1</i> expression after HGD. 18S <i>rRNA</i> was used as loading control. EV, cells transfected with empty vector as control. (F) Western blot against the HA-tag to detect HA-GAS1 after HGD. The intensity of the anti-HA signal, scanned and normalized to the protein load as given by the Ponceau staining, is shown in the row marked “Ratio”.</p

    Effects of liver transfection with <i>Gas1</i> in restoring gene expression in DEN-treated animals.

    No full text
    <p>The heatmap shows the expression level of the genes up- or down-regulated in DEN-induced liver tumors, which reverts towards control levels (p>0.05) after transfection with <i>Gas1</i>.</p
    corecore