6 research outputs found

    Contrasting properties of particle-particle and hole-hole excitations in ²⁰⁶Tl and ²¹⁰Bi nuclei

    Get PDF
    A complete-spectroscopy investigation of low-lying, low-spin states in the one-proton-hole and one-neutron-hole nucleus 206Tl has been performed by using thermal neutron capture and γ-coincidence technique with the FIPPS Ge array at ILL Grenoble. The new experimental results, together with data for the one-proton-particle and one-neutron-particle nucleus 210Bi (taken from a previous study done at ILL in the EXILL campaign), allowed for an extensive comparison with predictions of shell-model calculations performed with realistic interactions. No phenomenological adjustments were introduced in the calculations. In 210Bi, state energies, transition multipolarities and decay branchings agree well with theory for the three well separated multiplets of states which dominate the low-lying excitations. On the contrary, in 206Tl significant discrepancies are observed: in the same energy region, six multiplets were identified, with a significant mixing among them being predicted, as a consequence of the smaller energy separation between the active orbitals. The discrepancies in 206Tl are attributed to the larger uncertainties in the determination of the off-diagonal matrix elements of the realistic shell-model interaction with respect to the calculated diagonal matrix elements, the only ones playing a major role in the case of 210Bi. The work points to the need of more advanced approaches in the construction of the realistic interactions

    Shape transition in the neutron-rich Y nuclei and its evolution across the isotopic chain

    No full text
    The evolution of the deformation across the Y isotopic chain, in the vicinity of N = 60 boundary, has been studied using gamma spectroscopy methods. The nuclei of interest have been produced by neutron induced fission of 235U and 241Pu targets, during two experimental campaigns named EXILL and FIPPS at the Institute Laue-Langevin in Grenoble. The emitted gamma rays have been collected by HPGe and LaBr3 detectors providing the identification of the high-spin levels in the 94Y and 96Y isotopes up to 6 MeV excitation energy, as well as information about the half-lives of the in-band states in the 98Y nucleus. The obtained results shed new light on the onset of deformation in the neutron-rich Y isotopes and, in general, in the A ≈ 100 region

    Reduction in the uncertainty of the neutron-capture cross section of 210Bi: Impact of a precise multipolarity measurement of the 2− → 1− main ground-state transition

    No full text
    The mixing ratio of the main 320-keV, M1 + E2 ground-state γ transition in 210Bi has been more precisely quantified, allowing a significant reduction in the uncertainty of measurements of the neutron-capture cross section to the ground state of 210Bi from 25% to 0.9%. Accurate values for neutron-capture cross sections to both the ground and long-lived 9− isomeric state at 271 keV in 210Bi are of particular importance as Pb-Bi finds increased usage in Accelerator Driven Systems

    The γ-ray spectroscopy studies of low-spin structures in 210Bi and 206Tl using cold neutron capture reactions

    No full text
    The γ-coincidence studies of low-spin structures of 210Bi and 206Tl are presented. The 210Bi nucleus, populated in thermal neutron capture reaction, was investigated using EXILL HPGe array at Institut Laue-Langevin in Grenoble. The experimental results were compared to the shell-model calculations allowing to draw the conclusions on the nature of the low-spin excitations populated below the neutron binding energy in 210Bi (4.6 MeV). It has been found that some levels cannot be described by the valence proton and neutron couplings, but may arise from couplings of valence particles to the 3- octupole phonon of the doubly magic 208Pb core. Moreover, preliminary results of a low-spin structure measurements of 206Tl by the γ-coincidence technique, making use of the 205Tl(n,γ)206Tl reaction at the FIPPS prompt γ-ray spectroscopy facility of ILL are shown. The population of a large number of excited states of 206Tl above the ground state up to the neutron binding energy (at 6.5 MeV), within a few units of spin is expected. The analysis involving double and triple γ-coincidences and γγ-angular correlations will allow to significantly extend the experimental information on the energy and spin-parity of the levels in 206Tl. This will help shedding light on the proton-hole and neutron-hole couplings near the doubly magic core 208Pb

    The γ\gamma-ray spectroscopy studies of low-spin structures in 210^{210}Bi and 206^{206}Tl using cold neutron capture reactions

    Get PDF
    International audienceThe γ-coincidence studies of low-spin structures of 210Bi and 206Tl are presented. The 210Bi nucleus, populated in thermal neutron capture reaction, was investigated using EXILL HPGe array at Institut Laue-Langevin in Grenoble. The experimental results were compared to the shell-model calculations allowing to draw the conclusions on the nature of the low-spin excitations populated below the neutron binding energy in 210Bi (4.6 MeV). It has been found that some levels cannot be described by the valence proton and neutron couplings, but may arise from couplings of valence particles to the 3- octupole phonon of the doubly magic 208Pb core. Moreover, preliminary results of a low-spin structure measurements of 206Tl by the γ-coincidence technique, making use of the 205Tl(n,γ)206Tl reaction at the FIPPS prompt γ-ray spectroscopy facility of ILL are shown. The population of a large number of excited states of 206Tl above the ground state up to the neutron binding energy (at 6.5 MeV), within a few units of spin is expected. The analysis involving double and triple γ-coincidences and γγ-angular correlations will allow to significantly extend the experimental information on the energy and spin-parity of the levels in 206Tl. This will help shedding light on the proton-hole and neutron-hole couplings near the doubly magic core 208Pb
    corecore