4 research outputs found

    Development and Validation of Cutoff Value for Reduced Muscle Mass for GLIM Criteria in Patients with Gastrointestinal and Hepatobiliary–Pancreatic Cancers

    Get PDF
    The Global Leadership Initiative on Malnutrition (GLIM) criteria recommends using race- and sex-adjusted cutoff values for reduced muscle mass (RMM), but the only cutoff values available for Asians are the skeletal muscle mass index (SMI) established by the Asian Working Group for Sarcopenia (AWGS). This retrospective study aimed to develop and validate cutoff values for the fat-free mass index (FFMI) and arm circumference (AC) of Asians, and to investigate the association between GLIM malnutrition and prognosis. A total of 660 patients with primary gastrointestinal (GI) and hepatobiliary–pancreatic (HBP) cancers who underwent their first resection surgery were recruited and randomly divided into development and validation groups. The FFMI and AC cutoff values were calculated by receiver operating characteristic curve analysis for the AWGS SMI as the gold standard. The cutoff values for each RMM were used to diagnose malnutrition on the basis of GLIM criteria, and the survival rates were compared. The optimal FFMI cutoff values for RMM were 17 kg/m2 for men and 15 kg/m2 for women, and for AC were 27 cm for men and 25 cm for women. In the validation group, the accuracy of the FFMI and AC cutoff values to discriminate RMM were 85.2% and 68.8%, respectively. Using any of the three measures of RMM, overall survival rates were significantly lower in the GLIM malnutrition group. In conclusion, the cutoff values for the FFMI and AC in this study could discriminate RMM, and GLIM malnutrition using these cutoff values was associated with decreased survival

    Muscle strength is a stronger prognostic factor than mass

    No full text
    Objective: Sarcopenia have been reported as a prognostic risk factor in patients with gastrointestinal (GI) and hepatobiliary-pancreatic (HBP) cancers. This study aimed to investigate whether the loss of muscle mass or strength is a stronger prognostic factor and explore the cutoff values of skeletal muscle mass index (SMI) and handgrip strength (HGS) based on the survival outcome in patients with GI and HBP cancers. Methods: A total of 480 elderly patients with primary GI and HBP cancers who underwent their first resection surgery were analyzed retrospectively. The patients were divided into four groups: appropriate SMI and HGS, low SMI alone, low HGS alone, and low SMI and HGS. Low SMI derived from a bioelectrical impedance analysis and low HGS were defined according to the Asian Working Group for Sarcopenia 2019 criteria. Results: Multivariate analysis showed that the low SMI was a significant risk factor for mortality only in men, while the low HGS was significant in both sexes. From the multivariate analysis of the four groups, the low HGS alone and low SMI and HGS showed a significantly higher hazard ratio than appropriate SMI and HGS in both sexes. SMI 7.21 kg/m2 and HGS 28 kg were obtained as cutoff values based on the 3-year survival outcomes in men. Conclusion: Low muscle strength was a stronger prognostic factor than low muscle mass. Therefore, it is essential to measure muscle strength in all the patients

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore