16 research outputs found

    Flexible Learning Environments for a Sustainable Lifelong Learning Process for Teachers in the School Context

    Get PDF
    The flexibility of digital learning environments allows for personalized content delivery tailored to individual teachers’ needs, fostering active and engaged learning. The opportunities offered by these digital technologies can help teachers adopt a lifelong learning attitude, which has become necessary to maintaining high educational standards in line with international guidelines and policy. However, teachers often struggle to leverage these digital technologies and integrate them in their daily activities. To overcome this problem, we developed a custom-built webinar training course focused on enhancing distance learning teaching in a flexible environment. We tested this training course on a group of 197 primary school teachers and examine the relationship between learning goal orientation, motivation, and intention to transfer and how they related to teachers’ personality traits. We found that our webinar training course is easily implementable and valued by teachers, who highlight the importance of allowing the choice between different training levels. The data analysis indicates that intention to transfer is predicted by learning goal orientation and motivation. In conclusion, the study emphasizes the importance of flexible learning environments and tailored training programs that meet teachers’ needs and interests. From a sustainable perspective, such approaches foster teachers’ lifelong learning, enhance their professional development, nurture a growth mindset, and facilitate adaptability to change

    Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening

    Get PDF
    In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action

    Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening.

    Get PDF
    In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action

    Identification of molecules targeting the PKC/ELAV/mRNA cascade as innovative pharmacological tools

    No full text
    Recent literature evidences have been shown that dysregulation of the Protein Kinase C (PKC)/Embrionic Lethal Abnormal Vision (ELAV) proteins pathway led to a significant alteration of the expression of genes codifying for proteins (i.e TNFa, GAP-43, VEGF) primarily involved in several pathologies such as cancer, inflammation and neurodegeneration. Basing on these evidences, the PhD project has been mainly focused on the discovery of new molecules able to modulate the PKC/ELAVs/mRNA cascade, targeting either PKC or ELAV proteins

    Compounds Interfering with Embryonic Lethal Abnormal Vision (ELAV) Protein-RNA Complexes:An Avenue for Discovering New Drugs

    Get PDF
    RNA-binding proteins play a key role in post-transcriptional processes. Among these proteins, embryonic lethal abnormal vision (ELAV) proteins are among the best described. ELAV proteins predominantly act as positive regulators of gene expression, and their dysregulation is involved in several pathologies, such as cancer, inflammation, and neurodegenerative diseases. Only a few structurally unrelated compounds interfering with ELAV protein-mRNA complexes have been identified by applying high-throughput screening approaches. Considering the structural diversity of the compounds discovered so far and the different techniques employed for screening their ability to interfere with ELAV protein-mRNA complexes, drawing conclusions from structure-activity relationships remains a challenge. We performed docking studies to understand the interactions of compounds reported over the past decade to be inhibitors of ELAV proteins and to evaluate the potential of computer-aided drug design to target this family of proteins for further drug discovery

    PKC in regenerative therapy: New insights for old targets

    Get PDF
    Effective therapies for chronic or non-healing wounds are still missing. These tissue insults often result in severe clinical complications (i.e. infections and/or amputation) and sometimes lead to patients death. Accordingly, several research groups have focused their efforts in finding innovative and powerful therapeutic strategies to overcome these issues. On the basis of these considerations, the comprehension of the molecular cascades behind these pathological conditions could allow the identification of molecules against chronic wounds. In this context, the regulation of the Protein Kinase C (PKC) cascade has gained relevance in the prevention and/or reparation of tissue damages. This class of phosphorylating enzymes has already been considered for different physiological and pathological pathways and modulation of such enzymes may be useful in reparative processes. Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating widely known PKC modulators, involved in other diseases, as fruitful molecules in wound-healing

    Novel Compounds Targeting the RNA-Binding Protein HuR. Structure-Based Design, Synthesis, and Interaction Studies

    Get PDF
    The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex

    Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening

    No full text
    In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action

    Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening

    No full text
    In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR) it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action
    corecore