14 research outputs found

    Chemical variability and chemotype concept of essential oils from Algerian wild plants

    Get PDF
    The chemical compositions of eleven wild species of aromatic and medicinal plants indigenous to Algeria, including Thymus, Mentha, Rosmarinus, Lavandula, and Eucalyptus, were analyzed. The identification of the chemical composition of each oil was conducted using GC-FID and GC-MS capillary gas chromatography. The study investigated the chemical variability of the essential oils based on several parameters. These included the impact of the vegetative cycle on oil composition, variations among subspecies of the same species, variations among species within the same genus, the influence of environmental factors on composition variations within a species, chemo typing, and the genetic factors (such as hybridization) contributing to chemical variability. The concepts of chemotaxonomy, chemotype, and chemical markers were examined to understand their limitations and emphasize the importance of regulating the use of essential oils derived from wild plants. The study advocates for an approach that involves the domestication of wild plants and screening their chemical compositions according to more specific standards for each commercially available oil. Lastly, the nutritional implications and the variability of nutritional impact based on the chemical composition of the essential oils will be discussed

    Antifungal activity of essential oils of three aromatic plants from western Algéria against five fungal pathogens of tomato (Lycopersicon esculentum Mill)

    Get PDF
    The antifungal effect of the essential oils from Thymus capitatus L., Daucus crinitus Desf. and Tetraclinis articulate Vahl., aerial parts was evaluated in vitro against five phytopathogenic fungi of tomato (Fusarium oxysporum, Alternaria solani, Aspergillus niger, Penicillium sp1 and Penicillium sp2). Our results showed that among the three plant species tested, T. capitatus oil was the most potent antifungal against the fungi (inhibition of mycelial growth of 100 % at a concentration of 2 ”g mL-1). Furthermore, the essential oil of T. articulata was also effective against F. oxysporum, A. solani, A. niger, Penicillium sp1 and Penicillium sp2 with an inhibition of mycelial growth greater than 57 % at a concentration of 5 ”g mL-1. D. crinitus essential oil was less effective. T. capitatus essential oil was dominated by carvacrol (69.6 %) and p-cymene (12.4 %). The isochavicol isobutyrate (44.9 %) and isochavicol 2-methylbutyrate (9.7 %) were the major compounds in D. crinitus essential oil, while the most abundant compounds in T. articulata were α-pinene (32.0 %), cedrol (11.0 %) and 3-carene (9.6 %).The plant essential oils were found to be an effective antifungal against of mycelial growth and, therefore, can be exploited as an ideal treatment against disease rot of tomato or as a new potential source of natural additives for the food and/or pharmaceutical industries

    Characterization of volatile compounds of Daucus crinitus Desf. Headspace Solid Phase Microextraction as alternative technique to Hydrodistillation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditionally, the essential oil of aromatic herbs is obtained using hydrodistillation (HD). Because the emitted volatile fraction plays a fundamental role in a plant's life, various novel techniques have been developed for its extraction from plants. Among these, headspace solid phase microextraction (HS-SPME) can be used to obtain a rapid fingerprint of a plant's headspace. <it>Daucus crinitus </it>Desf. is a wild plant that grows along the west coast of Algeria. Only a single study has dealt with the chemical composition of the aerial part oils of Algerian <it>D. crinitus</it>, in which isochavicol isobutyrate (39.0%), octyl acetate (12.3%), and ÎČ-caryophyllene (5.4%) were identified. Using GC-RI and GC-MS analysis, the essential oils and the volatiles extracted from separated organs of <it>D. crinitus </it>Desf. were studied using HS-SPME.</p> <p>Results</p> <p>GC-RI and GC-MS analysis identified 72 and 79 components in oils extracted using HD and in the volatile fractions extracted using SPME, respectively. Two types of essential oils were produced by the plant: the root oils had aliphatic compounds as the main component (87.0%-90.1%), and the aerial part oils had phenylpropanoids as the main component (43.1%-88.6%). HS-SPME analysis showed a more precise distribution of compounds in the organs studied: oxygenated aliphatic compounds were well represented in the roots (44.3%-84.0%), hydrocarbon aliphatic compounds were in the leaves and stems (22.2%-87.9%), and phenylpropanoids were in the flowers and umbels (47.9%-64.2%). Moreover, HS-SPME allowed the occurrence of isochavicol (29.6 - 34.7%) as main component in <it>D. crinitus </it>leaves, but it was not detected in the oils, probably because of its solubility in water.</p> <p>Conclusions</p> <p>This study demonstrates that HD and HS-SPME modes could be complimentary extraction techniques in order to obtain the complete characterization of plant volatiles.</p

    Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC–MS and hydrodistillation techniques

    No full text
    The composition of essential oil extracted from Rhaponticum acaule L. roots growing wild in Algeria was studied by hydrodistillation (HD) and by Head-Space Solid Phase Micro-Extraction (HS-SPME). Quantitative but not qualitative differences have been found in the chemical composition of both analysed samples depending on the extraction method. However, the oil obtained from R. acaule roots shows that aliphatic alcohols were found to be the major class (69.2%), followed by the terpenes (5.5%), alkenes (5.2%) and alkynes (4.0%). In both cases the analysis were carried out using Gas Chromatography (GC) and Gas Chromatography–Mass Spectrometry (GC–MS). Our study shows that HS-SPME extraction could be considered as an alternative technique for the isolation of volatiles from plant. 25 components were identified in oil vs. 39 in the HS-SPME. However the oil composition of roots was mainly represented by a variety of aliphatic hydrocarbons (alcohols, aldehydes and ketones) and terpenes which are known for their antimicrobial activities

    Antibacterial Activity of Daucus crinitus Essential Oils along the Vegetative Life of the Plant

    No full text
    The essential oils from the aerial parts of Daucus crinitus Desf. were analyzed at three developmental stages (early vegetative, early flowering, and full flowering). Oil yield was found to vary depending on the stage of development, and the highest content of oil (0.15% w/w) was obtained at full flowering. The chemical composition of essential oils studied by GC and GC-MS showed a total of 71 compounds: 27 aliphatic compounds, 18 sesquiterpene hydrocarbons, 9 hydrocarbons monoterpene, 5 oxygenated monoterpenes, 5 phenolic compounds, 4 oxygenated sesquiterpenes, 2 oxygenated diterpenes, and 01 diterpene hydrocarbons. Whatever the analyzed stage, phenolic compounds were the most abundant group. Their level significantly increased during ripening and varied from 36.4 to 82.1%. Antimicrobial activities of oils were tested on four different microorganisms. The oils of various phenological stages showed high activity against Candida albicans (30 mm) and Staphylococcus aureus (11–28 mm) bacteria strains which are deemed very dangerous and very difficult to eliminate. Thus, they represent an inexpensive source of natural antibacterial substances that may potentially be used in pathogenic systems

    Structural Elucidation and Cytotoxicity of a New 17-Membered Ring Lactone from Algerian .

    No full text
    The chemical composition of a hexanic extract of , obtained from its aerial parts, was investigated by GC-FID, GC/MS, HRMS, NMR and VCD analyses. The main compounds were germacrene D (23.6%), eudesma-4(15)-7-dien-1-ÎČ-ol (8.2%) and falcarindiol (9.4%), which are associated with a new uncommon and naturally found 17-membered ring lactone. This 17-membered ring features conjugated acetylenic bonds, named campestrolide (23.0%). The crude extract showed moderate antitrypanosomal (), antileishmanial () and anticancer (cancerous macrophage-like murine cells) activities, and also displayed cytotoxicity, (human normal fibroblasts) in similar concentration ranges (IC = 3.0, 3.9, 4.0 and 4.4 ”g/mL respectively). Likewise, campestrolide displayed low activity on all tested cells (IC: 12.5⁻19.5 ”M) except on , on which it was very active and moderately selective (IC = 2.2 ”M. SI= 8.9). In conclusion, the new compound that has been described, displaying a singular structure, possesses interesting antitrypanosomal activity that should be further investigated and improved

    Molluscicidal and parasiticidal activities of Eryngium triquetrum essential oil on Schistosoma mansoni and its intermediate snail host Biomphalaria glabrata, a double impact

    No full text
    International audienceBackground: Freshwater snails are the intermediate hosts of a large variety of trematode flukes such as Schistosoma mansoni responsible for one of the most important parasitic diseases caused by helminths, affecting 67 million people worldwide. Recently, the WHO Global Vector Control Response 2017-2030 (GVCR) programme reinforced its message for safer molluscicides as part of required strategies to strengthen vector control worldwide. Here, we present the essential oil from Eryngium triquetrum as a powerful product with molluscicide and parasiticide effect against S. mansoni and the snail intermediate host Biomphalaria glabrata. Methods: In the present study, we describe using several experimental approaches, the chemical composition of E. triquetrum essential oil extract and its biological effects against the snail B. glabrata and its parasite S. mansoni. Vector and the free-swimming larval stages of the parasite were exposed to different oil concentrations to determine the lethal concentration required to produce a mortality of 50% (LC 50) and 90% (LC 90). In addition, toxic activity of this essential oil was analyzed against embryos of B. glabrata snails by monitoring egg hatching and snail development. Also, short-time exposure to sublethal molluscicide concentrations on S. mansoni miracidia was performed to test a potential effect on parasite infectivity on snails. Mortality of miracidia and cercariae of S. mansoni is complete for 5, 1 and 0.5 ppm of oil extract after 1 and 4 h exposure. Results: The major chemical component found in E. triquetrum oil determined by GC-FID and GC/MS analyses is an aliphatic polyacetylene molecule, the falcarinol with 86.9-93.1% of the total composition. The LC 50 and LC 90 values for uninfected snails were 0.61 and 1.02 ppm respectively for 24 h exposure. At 0.5 ppm, the essential oil was two times more toxic to parasitized snails with a mortality rate of 88.8 ± 4.8%. Moderate embryonic lethal effects were observed © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article' s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article

    Essential Oil of Algerian : Chemical Variability and Evaluation of Biological Activities.

    No full text
    The chemical composition of essential oils extracted from aerial parts of collected in 37 localities from Western Algeria was characterized using GC-FID and GC/MS analyses. Altogether, 52 components, which accounted for 70.1 to 86.8% of the total composition oils were identified. The main compounds were Germacrene D (0.4-53.4%), Campestrolide (1.6-35.3%), Germacrene B (0.2-21.5%), Myrcene (0.1-8.4%), α-Cadinol (0.2-7.6%), Spathulenol (0.1-7.6%), Eudesma-4(15)-7-dien-1-ÎČ-ol (0.1-7.6%) and τ-Cadinol (0.3-5.5%). The chemical compositions of essential oils obtained from separate organs and during the complete vegetative cycle of the plant were also studied. With the uncommon 17-membered ring lactone named Campestrolide as the main component, Algerian essential oils exhibited a remarkable chemical composition. A study of the chemical variability using statistical analysis allowed the discrimination of two main clusters according to the geographical position of samples. The study contributes to the better understanding of the relationship between the plant and its environment. Moreover, the antimicrobial activity of the essential oil was assessed against twelve strains bacteria and two yeasts involved in foodborne and nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a strong activity against Gram-positive strains such as , , and . The cytotoxicity and antiparasitic activities (on and ) of the collective essential oil and one sample rich in campestrolide, as well as some enriched fractions or fractions containing other terpenic compounds, were also analyzed. Campestrolide seems to be one compound responsible for the cytotoxic and antileishmanial effect, while myrcene or/and ÎČ-farnesene have a more selective antitrypanosomal activity

    Essential Oils from Two Apiaceae Species as Potential Agents in Organic Crops Protection

    Get PDF
    International audienceChemical composition and herbicidal, antifungal, antibacterial and molluscicidal activities of essential oils from Choukzerk, Eryngium triquetrum, and Alexander, Smyrnium olusatrum, from western Algeria were characterized. Capillary GC-FID and GC/MS were used to investigate chemical composition of both essential oils, and the antifungal, antibacterial, molluscicidal and herbicidal activities were determined by % inhibition. Collective essential oil of E. triquetrum was dominated by falcarinol (74.8%) and octane (5.6%). The collective essential oil of S. olusatrum was dominated by furanoeremophilone (31.5%), furanodiene+curzurene (19.3%) and (E)-ÎČ-caryophyllene (11%). The E. triquetrum oil was tested and a pure falcarinol (99%) showed virtuous herbicidal and antibacterial activities against potato blackleg disease, Pectobacterium atrosepticum, and Gram-negative soil bacterium, Pseudomonas cichorii (85 and 100% inhibition, respectively), and high ecotoxic activity against brine shrimp, Artemia salina, and the freshwater snail, Biomphalaria glabrata, with an IC50 of 0.35 ”g/mL and 0.61 ”g/mL, respectively. Essential oil of S. olusatrum showed interesting antibacterial and ecotoxic activity and good herbicidal activity against watercress seeds, Lepidium sativum (74% inhibition of photosynthesis, 80% mortality on growth test on model watercress), while the furanoeremophilone isolated from the oil (99% pure) showed moderate herbicidal activity. Both oils showed excellent antifungal activity against Fusarium. Both oils and especially falcarinol demonstrated good potential as new biocontrol agents in organic crop protection
    corecore