24 research outputs found

    Isolation of herbicidal compounds, quercetin and β-caryophyllene, from Digera muricata

    No full text
    Synthetic herbicides are available to control weeds but these herbicides have many concerns. Eco-friendly herbicides obtained from plants is a better alternative to synthetic ones. Despite that the herbicidal activity of Digera muricata extracts have been reported but there are no studies regarding the isolation and identification of herbicidal compounds from D. muricata. Herein, we are reporting the identification of two herbicidal compounds from chloroform extract obtained from D. muricata. The chloroform extract was initially tested on the germination and early growth of two weeds; Avena fatua and Melilotus indicus as well as wheat where a significant decline in % age germination and growth of both weeds was observed. Among the 8 different fractions obtained using different chromatographic techniques, fractions 2 and 7 were found to be phytotoxic to both test weeds. The herbicidal efficacy was tested at 200, 150, 100, 50, 25 μg/ml. These two fractions were further purified on Reversed Phase High Pressure Liquid Chromatography (RP-HPLC). Fraction 2 yielded 3 sub-fractions (2A, 2B & 2C), while fraction 7 yielded 2 sub-fractions (7A, 7B). Fraction 2B caused 43%, 53%, and 57% decline in seed germination, shoot dry weight, and root dry weight of A. fatua, while these values against M. indicus were 50%, 81% and 84%, respectively. Fraction 7A caused 25%, 36%, and 42% decline in seed germination, shoot dry weight, and root dry weight of A. fatua, while these values against M. indicus were 35%, 62% and 69%, respectively, at 200 μg/ml conc. Cyanazine caused 61% and 50% reduction in seed germination of A. fatua and M. indicus, respectively. The herbicidal effects of these two fractions were found nonsignificant against wheat. Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis (C,H) and Nuclear Magnetic Resonanace (NMR) analyses of these two fractions depicted the presence of quercetin (Fraction 2B) and β-caryophyllene (Fraction 7A). In post emergence bioassays, the isolated compounds caused significant decrease in the biomass of both weeds. Plasma membrane integrity assays revealed electrolyte leakage in treated leaf discs of both weeds. It was concluded that quercetin and β-caryophyllene isolated from D. muricata exhibited toxicity towards both test weeds without harming wheat

    Experimental and Numerical Investigation of Construction Defects in Reinforced Concrete Corbels

    No full text
    Reinforced concrete corbels were examined in this study for the cracking behavior and strength evaluation, focusing on defects typically found in these structures. A total of 11 corbel specimens were tested, including healthy specimens (HS), specimens with lower concrete strength (LC), specimens with less reinforcement ratio (LR), and specimens with more concrete cover than specifications (MC). The HS specimens were designed using the ACI conventional method. The specimens were tested under static loading conditions, and the actual strengths along with the crack patterns were determined. In the experimental tests, the shear capacity of the HS specimens was 28.18% and 57.95% higher than the LR and LC specimens, respectively. Similarly, the moment capacity of the HS specimens was 25% and 57.52% greater than the LR and LC specimens, respectively. However, in the case of the built-up sections, the shear capacity of the HS specimens was 9.91% and 37.51% higher than the LR and LC specimens, respectively. Likewise, the moment capacity of the HS specimens was 39.91% and 14.30% higher than the LR and LC specimens, respectively. Moreover, a detailed nonlinear finite element model (FEM) was developed using ABAQUS, and a more user-friendly strut and tie model (STM) was investigated toward its suitability to assess the strengths of the corbels with construction defects. The results from FEM and STM were compared. It was found that the FEM results were in close agreement with their experimental counterparts

    Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties

    No full text
    To meet food security, commercial fertilizers are available to boost wheat yield, but there are serious ill effects associated with these fertilizers. Amongst various organic alternatives, inoculating crop fields with mycorrhizal species is the most promising option. Although, mycorrhizae are known to enhance wheat yield, but how the mycorrhizae influence different yield and quality parameters of wheat, is not clear. Therefore, this study was undertaken to investigate the influence of indigenous mycorrhizal species on the growth of wheat, its nutritional status and soil properties, in repeated set of field experiments. In total 11 species of mycorrhizae were isolated from the experimental sites with Claroideoglomus, being the most dominant one. Five different treatments were employed during the present study, keeping plot size for each replicate as 6 × 2 m. Introduction of consortia of mycorrhizae displayed a significant increase in number of tillers/plant (49.5%), dry biomass (17.4%), grain yield (21.2%) and hay weight (16.7%). However, there was non-significant effect of mycorrhizal inoculation on 1,000 grains weight. Moreover, protein contents were increased to 24.2%. Zinc, iron, phosphorus and potassium concentrations were also increased to 24%, 21%, 30.9% and 14.8%, respectively, in wheat grains. Enhancement effects were also noted on soil fertility such as soil organic carbon % age, available phosphorus and potassium were increased up to 64.7%, 35.8% and 23.9%, respectively. Herein, we concluded that mycorrhizal introduction in wheat fields significantly increased tillering in wheat and this increased tillering resulted in overall increase in wheat biomass/yield. Mycorrhizae also enhanced nutritional attributes of wheat grains as well as soil fertility. The use of mycorrhizae will help to reduce our dependance on synthetic fertilizers in sustainable agriculture

    Effects of eccentric loading on performance of concrete columns reinforced with glass fiber‑reinforced polymer bars

    No full text
    Glass fiber-reinforced polymer (GFRP) reinforcements are superior to traditional steel bars in concrete structures, particularly in vertical elements like columns, and offer significant advantages over conventional steel bars when subjected to axial and eccentric loadings. However, there is limited experimental and numerical research on the behavior of GFRP-reinforced concrete (RC) columns under eccentric loading having different spacing of stirrups. In this study, six specimens were cast under three different values of eccentricities (25 mm, 50 mm, and 75 mm) with two groups of stirrups spacing (50 mm and 100 mm). The experimental results showed that by increasing the eccentricity value, there was a reduction in the load-carrying capacity of the specimens. The finite element ABAQUS software was used for the numerical investigation of this study. The results from the finite element analysis (FEA) were close to the experimental results and within the acceptable range. The maximum difference between the experimental and FEA results was 3.61% for the axial load and 12.06% for the deformation

    Mechanical strengthening and metabolic re-modulations are involved in protection against Fusarium wilt of tomato by B. subtilis IAGS174

    No full text
    Rhizospheric bacteria may induce resistance to plant diseases. However, the underlying plant resistance mechanisms are unclear. We demonstrated the potential ability of the rhizobacterial strain Bacillus subtilis IAGS174 to elicit systemic resistance in tomato plants against Fusarium wilt pathogens. Comparative biochemical, histological, and molecular analyses were conducted to screen the differential responses between non-inoculated and B. subtilis IAGS174-inoculated tomato plants followed by pathogen challenge. B. subtilis IAGS174 had a significant inhibitory effect on disease development and reduced the disease index. B. subtilis IAGS174-primed plants exhibited significantly improved synthesis of total phenolics, flavonoids, and plant defense enzymes. Furthermore, priming increased the production of physical defense barriers including lignin. Additionally, RT-qPCR analysis revealed that disease resistance in bacteria-treated tomato plants was associated with increased expression levels of lignin-related and phenylpropanoid biosynthetic genes. Our findings support a positive role of B. subtilis IAGS174 in triggering immunity of tomato plants against a soil-borne disease.This study was supported by funding from the Department of Science and Technology of Guangdong Province (Project No: 2020B0202090002), Guangdong Agriculture Department of China (2020KJ122), and China Science and Technology Foundation of China (Project No: QN2020013006).Peer reviewe

    Effects of eccentric loading on performance of concrete columns reinforced with glass fiber‑reinforced polymer bars

    No full text
    Glass fiber-reinforced polymer (GFRP) reinforcements are superior to traditional steel bars in concrete structures, particularly in vertical elements like columns, and offer significant advantages over conventional steel bars when subjected to axial and eccentric loadings. However, there is limited experimental and numerical research on the behavior of GFRP-reinforced concrete (RC) columns under eccentric loading having different spacing of stirrups. In this study, six specimens were cast under three different values of eccentricities (25 mm, 50 mm, and 75 mm) with two groups of stirrups spacing (50 mm and 100 mm). The experimental results showed that by increasing the eccentricity value, there was a reduction in the load-carrying capacity of the specimens. The finite element ABAQUS software was used for the numerical investigation of this study. The results from the finite element analysis (FEA) were close to the experimental results and within the acceptable range. The maximum difference between the experimental and FEA results was 3.61% for the axial load and 12.06% for the deformation

    MTDC Grids: A Metaheuristic Solution for Nonlinear Control

    No full text
    This scientific paper aims to increase the voltage source converter (VSC) control efficiency in a multi-terminal high voltage direct current (MTDC) network during dynamic operations. In the proposed study, the Mayfly algorithm (MA) is used to modify the control parameters of VSC stations. Traditional strategies that modify VSC control settings using approximate linear models fail to produce optimal results because VSCs are nonlinear characteristics of the MTDC system. Particle swarm optimization (PSO) may produce optimal outcomes, but it is prone to becoming stuck in a local optimum. To modify the proportional-integral (P.I.) control parameters of the VSC station, the Mayfly algorithm, a modified form of PSO, is used. The suggested algorithm’s objective function simultaneously optimizes both the outer and inner control layers. A four-terminal MTDC test system is developed in PSCAD/EMTDC to assess the benefits of the proposed algorithm. For VSCs, a comparison of classical, PSO, and proposed MA-based tuned parameters is carried out. The integral of time multiplied by absolute error (ITAE) criterion is used to compare the performance of classical, PSO, and a proposed algorithm for VSC controller parameters/gains. With an ITAE value of 6.8521 × 10−6, the MA-based proposed algorithm computes the optimal values and outperforms its predecessor to adjust the VSCs controller gains. For (i) wind farm power variation, (ii) AC grid load demand variation, and (iii) ultimate permanent VSC disconnection, steady-state and dynamic performances are evaluated. According to the results, the proposed algorithm based MTDC system performs well during transients

    Selenium-Priming mediated growth and yield improvement of turnip under saline conditions

    No full text
    Salt toxicity is one of the foremost environmental stresses that declines nutrient uptake, photosynthetic activity and growth of plants resulting in a decrease in crop yield and quality. Seed priming has become an emergent strategy to alleviate abiotic stress and improve plant growth. During the current study, turnip seed priming with sodium selenite (Na2SeO3) was investigated for its ability to mitigate salt stress. Turnip (Brassica rapa L. var. Purple Top White Globe) seeds primed with 75, 100, and 125 μML−1 of Se were subjected to 200 mM salt stress under field conditions. Findings of the current field research demonstrated that salt toxicity declined seed germination, chlorophyll content, and gas exchange characteristics of B. rapa seedling. Whereas, Se-primed seeds showed higher germination rate and plant growth which may be attributed to the decreased level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased synthesis of proline (36%) and besides increased total chlorophyll (46%) in applied turnip plants. Higher expression levels of genes encoding antioxidative activities (CAT, POD, SO,D and APX) mitigated oxidative stress induced by the salt toxicity. Additionally, Se treatment decreased Na+ content and enhanced K+ content resulting in elevated K+/Na+ ratio in the treated plants. The in-silico assessment revealed the interactive superiority of Se with antioxidant enzymes including CAT, POD, SOD, and APX as compared to sodium chloride (NaCl). Computational study of enzymes-Se and enzymes-NaCl molecules also revealed the stress ameliorative potential of Se through the presence of more Ramachandran-favored regions (94%) and higher docking affinities of Se (-6.3). The in-silico studies through molecular docking of Na2SeO3, NaCl, and ROS synthesizing enzymes (receptors) including cytochrome P450 (CYP), lipoxygenase (LOX), and xanthine oxidase (XO), also confirmed the salt stress ameliorative potential of Se in B. rapa. The increased Ca, P, Mg, and Zn nutrients uptake nutrients uptake in 100 μML−1 Se primed seedlings helped to adjust the stomatal conductivity (35%) intercellular CO2 concentration (32%), and photosynthetic activity (41%) resulting in enhancement of the yield attributes. More number of seeds per plant (6%), increased turnip weight (115 gm) root length (17.24 cm), root diameter (12 cm) as well as turnip yield increased by (9%tons ha−1) were recorded for 100 μML−1 Se treatment under salinity stress. Findings of the current research judiciously advocate the potential of Se seed priming for salt stress alleviation and growth improvement in B. rapa. According to our best of knowledge, it is the first time that seed primed with Selenium have been evaluated regarding NaCl stress mitigation in turnip. Salinity toxicity negatively affected physiochemical activities and growth of B.rapa.Seed priming with Selenium (Na2SeO3) mitigated salinity stress.Selenium (Se) enhanced nutrition, photosynthetic and antioxidant activity of applied plants.Selenium treated plants exhibited improved growth and reduced salinity content. Salinity toxicity negatively affected physiochemical activities and growth of B.rapa. Seed priming with Selenium (Na2SeO3) mitigated salinity stress. Selenium (Se) enhanced nutrition, photosynthetic and antioxidant activity of applied plants. Selenium treated plants exhibited improved growth and reduced salinity content.</p
    corecore