61 research outputs found

    Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging

    Get PDF
    CO2-enrichment experiments consistently show that rooting depth increases when trees are grown at elevated CO2 (eCO2), leading in some experiments to increased capture of available soil nitrogen (N) from deeper soil. However, the link between N uptake an

    Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis

    Get PDF
    Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N(IN, ammonium, nitrate) and organic N (ON, e.g.amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses

    Genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population

    Get PDF
    The genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population were estimated by applying the Average Information Restricted Maximum Likelihood method to an animal model. Data from a flock supported by the Programa de Melhoramento Genético de Caprinos e Ovinos de Corte (GENECOC) were used. The traits studied included birth weight (BW), weaning weight (WW), slaughter weight (SW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to slaughter (GWS), weight gain from weaning to yearling (GWY), age at first lambing (AFL), lambing interval (LI), gestation length (GL), lambing date (LD - number of days between the start of breeding season and lambing), litter weight at birth (LWB) and litter weight at weaning (LWW). The direct heritabilities were 0.35, 0.81, 0.65, 0.49, 0.20, 0.15 and 0.39 for BW, WW, SW, YW, GBW, GWS and GWY, respectively, and 0.04, 0.06, 0.10, 0.05, 0.15 and 0.11 for AFL, LI, GL, LD, LWB and LWW, respectively. Positive genetic correlations were observed among body weights. In contrast, there was a negative genetic correlation between GBW and GWS (-0.49) and GBW and GWY (-0.56). Positive genetic correlations were observed between AFL and LI, LI and GL, and LWB and LWW. These results indicate a strong maternal influence in this herd and the presence of sufficient genetic variation to allow mass selection for growth traits. Additive effects were of little importance for reproductive traits, and other strategies are necessary to improve the performance of these animals

    A field trial of production and financial consequences of helminthosis control in sheep production in Ethiopia

    No full text
    We used a partial-budget analysis to evaluate profitability of different management strategies of three genotypes of sheep in a 2 × 2 × 3 factorial experiment conducted at Debre Berhan research station in the central highlands of Ethiopia. This involved two anthelmintic-treatment levels (treated vs. non-treated), two supplementary nutrition levels (protein–energy supplementation yes/no) and three genotypes: indigenous Menz (n = 40), 50% Awassi × 50% Menz crosses (n = 38) and 75% Awassi × 25% Menz crosses (n = 31). All sheep were exposed to natural sub-clinical helminthosis challenge. Supplemented sheep were offered a concentrate mix daily on an individual basis. Anthelmintic-treated sheep were drenched with fenbendazole against nematodes and with triclabendazole against trematodes. Data were collected during the experimental period (for 10 months from 1 year of age) on feed intake, live weight, eggs per gram (EPG) of faeces, packed-cell volume (PCV), wool weight, and adult-worm burden. Actual market input and output prices were recorded. Supplemented sheep had significantly higher marginal profit (MP) per sheep than non-supplemented sheep (ETB1 33 vs. 4). Likewise, anthelmintic treated sheep performed significantly better than their non-treated contemporaries (MP = ETB 28 vs. 8). The 75% Awassi crosses were least profitable

    CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2

    Get PDF
    Pharmacologically difficult targets, such as MYC transcription factors, represent a major challenge in cancer therapy. For the childhood cancer neuroblastoma, amplification of the oncogene MYCN is associated with high-risk disease and poor prognosis. Here, we deployed genome-scale CRISPR-Cas9 screening of MYCN-amplified neuroblastoma and found a preferential dependency on genes encoding the polycomb repressive complex 2 (PRC2) components EZH2, EED, and SUZ12. Genetic and pharmacological suppression of EZH2 inhibited neuroblastoma growth in vitro and in vivo. Moreover, compared with neuroblastomas without MYCN amplification, MYCN-amplified neuroblastomas expressed higher levels of EZH2. ChIP analysis showed that MYCN binds at the EZH2 promoter, thereby directly driving expression. Transcriptomic and epigenetic analysis, as well as genetic rescue experiments, revealed that EZH2 represses neuronal differentiation in neuroblastoma in a PRC2-dependent manner. Moreover, MYCN-amplified and high-risk primary tumors from patients with neuroblastoma exhibited strong repression of EZH2-regulated genes. Additionally, overexpression of IGFBP3, a direct EZH2 target, suppressed neuroblastoma growth in vitro and in vivo. We further observed strong synergy between histone deacetylase inhibitors and EZH2 inhibitors. Together, these observations demonstrate that MYCN upregulates EZH2, leading to inactivation of a tumor suppressor program in neuroblastoma, and support testing EZH2 inhibitors in patients with MYCN-amplified neuroblastoma
    • …
    corecore