5 research outputs found

    Esterase-Activated Charge-Reversal Polymer for Fibroblast-Exempt Cancer Gene Therapy

    Get PDF
    Selective gene expression in tumors via responsive dissociation of polyplexes triggered by intracellular signals is demonstrated. An esterase-responsive charge-reversal polymer mediates selective gene expression in the cancer cells high in esterases over fibroblasts low in esterase activity. Its gene therapy with the TRAIL suicide gene effectively induces apoptosis of HeLa cells but does not activate fibroblasts to secrete WNT16B, enabling potent cancer gene therapy with few side effects

    An Esterase-Responsive SLC7A11 shRNA Delivery System Induced Ferroptosis and Suppressed Hepatocellular Carcinoma Progression

    No full text
    Ferroptosis has garnered attention as a potential approach to fight against cancer, which is characterized by the iron-driven buildup of lipid peroxidation. However, the robust defense mechanisms against intracellular ferroptosis pose significant challenges to its effective induction. In this paper, an effective gene delivery vehicle was developed to transport solute carrier family 7 member 11 (SLC7A11) shRNA (shSLC7A11), which downregulates the expression of the channel protein SLC7A11 and glutathione peroxidase 4 (GPX4), evoking a surge in reactive oxygen species production, iron accumulation, and lipid peroxidation in hepatocellular carcinoma (HCC) cells, and subsequently leading to ferroptosis. This delivery system is composed of an HCC-targeting lipid layer and esterase-responsive cationic polymer, a poly{N-[2-(acryloyloxy)ethyl]-N-[p-acetyloxyphenyl]-N} (PQDEA) condensed shSLC7A11 core (G−LPQDEA/shSLC7A11). After intravenous (i.v.) injection, G−LPQDEA/shSLC7A11 quickly accumulated in the tumor, retarding its growth by 77% and improving survival by two times. This study is the first to construct a gene delivery system, G−LPQDEA/shSLC7A11, that effectively inhibits HCC progression by downregulating SLC7A11 expression. This underscores its therapeutic potential as a safe and valuable candidate for clinical treatment

    Precise nanomedicine for intelligent therapy of cancer

    No full text
    corecore