447 research outputs found

    Bioenergetic dysfunction in Huntington's disease human cybrids

    Get PDF
    In this work we studied the mitochondrial-associated metabolic pathways in Huntington's disease (HD) versus control (CTR) cybrids, a cell model in which the contribution of mitochondrial defects from patients is isolated. HD cybrids exhibited an interesting increase in ATP levels, when compared to CTR cybrids. Concomitantly, we observed increased glycolytic rate in HD cybrids, as revealed by increased lactate/pyruvate ratio, which was reverted after inhibition of glycolysis. A decrease in glucose-6-phosphate dehydrogenase activity in HD cybrids further indicated decreased rate of the pentose-phosphate pathway. ATP levels of HD cybrids were significantly decreased under glycolysis inhibition, which was accompanied by a decrease in phosphocreatine. Nevertheless, pyruvate supplementation could not recover HD cybrids' ATP or phosphocreatine levels, suggesting a dysfunction in mitochondrial use of that substrate. Oligomycin also caused a decrease in ATP levels, suggesting a partial support of ATP generation by the mitochondria. Nevertheless, mitochondrial NADH/NAD(t) levels were decreased in HD cybrids, which was correlated with a decrease in pyruvate dehydrogenase activity and protein expression, suggesting decreased tricarboxylic acid cycle (TCA) input from glycolysis. Interestingly, the activity of alpha-ketoglutarate dehydrogenase, a critical enzyme complex that links the TCA to amino acid synthesis and degradation, was increased in HD cybrids. In accordance, mitochondrial levels of glutamate were increased and alanine was decreased, whereas aspartate and glutamine levels were unchanged in HD cybrids. Conversely, malate dehydrogenase activity from total cell extracts was unchanged in HD cybrids. Our results suggest that inherent dysfunction of mitochondria from HD patients affects cellular bioenergetics in an otherwise functional nuclear background

    Mitochondrial-dependent apoptosis in Huntington's disease human cybrids

    Get PDF
    We investigated the involvement of mitochondrial-dependent apoptosis in Huntington's disease (HD) vs. control (CTR) cybrids, obtained from the fusion of human platelets with mitochondrial DNA-depleted NT2 cells, and further exposed to 3-nitropropionic acid (3-NP) or staurosporine (STS). Untreated HD cybrids did not exhibit significant modifications in the activity of mitochondrial respiratory chain complexes I-IV or in mtDNA sequence variations suggestive of a primary role in mitochondrial susceptibility in the subpopulation of HD carriers studied. However, a slight decrease in mitochondrial membrane potential and increased formation of intracellular hydroperoxides was observed in HD cybrids under basal conditions. Furthermore, apoptotic nuclei morphology and a moderate increase in caspase-3 activation, as well as increased levels of superoxide ions and hydroperoxides were observed in HD cybrids upon 3-NP or STS treatment. 3-NP-evoked apoptosis in HD cybrids involved cytochrome c and AIF release from mitochondria, which was associated with mitochondrial Bax translocation. CTR cybrids subjected to 3-NP showed increased mitochondrial Bax and Bim levels and the release of AIF, but not cytochrome c, suggesting a different mode of cell death, linked to the loss of membrane integrity. Additionally, increased mitochondrial Bim and Bak levels, and a slight release of cytochrome c in untreated HD cybrids may help to explain their moderate susceptibility to mitochondrial-dependent apoptosi

    Avaliação de desempenho: discutindo a tecnologia para o planejamento e gestĂŁo de recursos humanos em saĂșde

    Get PDF
    Este ensaio apresenta o produto de reflexĂ”es e anĂĄlises a partir do exame de opçÔes conceituais inerentes Ă s metodologias de avaliação de desempenho (AD) de profissionais e sua possibilidade de aplicação na ĂĄrea da saĂșde. Estabelece uma discussĂŁo conceitual para a ĂĄrea, articulando e integrando conhecimentos de campos distintos - o da saĂșde e o da administração pĂșblica. Promove a intersecção entre a gestĂŁo do trabalho em saĂșde no setor pĂșblico e as tĂ©cnicas da administração de pessoal. Pretende gerar novas anĂĄlises e estudos que possibilitem uma releitura das prĂĄticas administrativas para avaliação de desempenho utilizadas nas organizaçÔes, adaptĂĄ-las para atender Ă s especificidades do setor saĂșde

    The Liver Plays a Major Role in Clearance and Destruction of Blood Trypomastigotes in Trypanosoma cruzi Chronically Infected Mice

    Get PDF
    Intravenous challenge with Trypanosoma cruzi can be used to investigate the process and consequences of blood parasite clearance in experimental Chagas disease. One hour after intravenous challenge of chronically infected mice with 5×106 trypomastigotes, the liver constituted a major site of parasite accumulation, as revealed by PCR. Intact parasites and/or parasite remnants were visualized at this time point scattered in the liver parenchyma. Moreover, at this time, many of liver-cleared parasites were viable, as estimated by the frequency of positive cultures, which considerably diminished after 48 h. Following clearance, the number of infiltrating cells in the hepatic tissue notably increased: initially (at 24 h) as diffuse infiltrates affecting the whole parenchyma, and at 48 h, in the form of large focal infiltrates in both the parenchyma and perivascular spaces. Phenotypic characterization of liver-infiltrating cells 24 h after challenge revealed an increase in Mac1+, CD8+ and CD4+ cells, followed by natural killer (NK) cells. As evidence that liver-infiltrating CD4+ and CD8+ cells were activated, increased frequencies of CD69+CD8+, CD69+CD4+ and CD25+CD122+CD4+ cells were observed at 24 and 48 h after challenge, and of CD25−CD122+CD4+ cells at 48 h. The major role of CD4+ cells in liver protection was suggested by data showing a very high frequency of interferon (IFN)-γ-producing CD4+ cells 24 h after challenge. In contrast, liver CD8+ cells produced little IFN-γ, even though they showed an enhanced potential for secreting this cytokine, as revealed by in vitro T cell receptor (TCR) stimulation. Confirming the effectiveness of the liver immune response in blood parasite control during the chronic phase of infection, no live parasites were detected in this organ 7 days after challenge

    Effects of preoperative feeding with a whey protein plus carbohydrate drink on the acute phase response and insulin resistance. A randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prolonged preoperative fasting increases insulin resistance and current evidence recommends carbohydrate (CHO) drinks 2 hours before surgery. Our hypothesis is that the addition of whey protein to a CHO-based drink not only reduces the inflammatory response but also diminish insulin resistance.</p> <p>Methods</p> <p>Seventeen patients scheduled to cholecystectomy or inguinal herniorraphy were randomized and given 474 ml and 237 ml of water (CO group) or a drink containing CHO and milk whey protein (CHO-P group) respectively, 6 and 3 hours before operation. Blood samples were collected before surgery and 24 hours afterwards for biochemical assays. The endpoints of the study were the insulin resistance (IR), the prognostic inflammatory and nutritional index (PINI) and the C-reactive protein (CRP)/albumin ratio. A 5% level for significance was established.</p> <p>Results</p> <p>There were no anesthetic or postoperative complications. The post-operative IR was lower in the CHO-P group when compared with the CO group (2.75 ± 0.72 vs 5.74 ± 1.16; p = 0.03). There was no difference between the two groups in relation to the PINI. The CHO-P group showed a decrease in the both CRP elevation and CRP/albumin ratio (p < 0.05). The proportion of patients who showed CRP/albumin ratio considered normal was significantly greater (p < 0.05) in the CHO-P group (87.5%) than in the CO group (33.3%).</p> <p>Conclusions</p> <p>Shortening the pre-operative fasting using CHO and whey protein is safe and reduces insulin resistance and postoperative acute phase response in elective moderate operations.</p> <p>Trial registration</p> <p>ClinicalTrail.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01354249">NCT01354249</a></p

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    DODAB and DODAC bilayer-like aggregates in the micromolar surfactant concentration domain

    Get PDF
    In the millimolar concentration domain (typically 1 mM), dioctadecyldimethylammonium bromide and chloride (DODAX, X representing Br- or Cl- counterions) molecules assemble in water as large unilamellar vesicles. Differential scanning calorimetry (DSC) is a suitable technique to obtain the melting temperature (Tm) characteristic of surfactant bilayers, while fluorescence spectroscopy detects formation of surfactant aggregates, like bilayers. These two techniques were combined to investigate the assemble of DODAX molecules at micromolar concentrations, from 10 to 100 micromolar. At 1 mM surfactant, Tm ~ 45 ÂșC and 49 oC, respectively for DODAB and DODAC. DSC and fluorescence of Nile Red were used to show the formation of DODAX aggregates, at the surfactant concentration as low as 10 micromolar, whose Tm decreases monotonically with increasing DODAX concentration to attain the value for the ordinary vesicles. The data indicate that these aggregates are organized as bilayer-like structures.Fundação para a CiĂȘncia e a Tecnologia (FCT
    • 

    corecore