53 research outputs found

    Assessment of Radiated Fan Noise Prediction Capabilities Using Static Engine Test Data

    Get PDF
    This paper describes further assessment of the CDUCT-LaRC code via comparison with static engine test data. In an effort to improve confidence in the use of CDUCT-LaRC for liner optimization studies addressing realistic three-dimensional geometries, inlet radiated fan noise predictions were performed at 54% and 87% engine speed settings. Predictions were then compared with far-field measurements to assess the approach and implementation. The particular configurations were chosen to exercise the three-dimensional capability of CDUCT-LaRC and it s applicability to realistic configurations and conditions. At the 54% engine speed setting, the predictions capture the general directivity and acoustic treatment effects quite well. Comparisons of the predicted and measured directivity at the 87% power setting were more problematic. This was likely due in part to the difficulties in source specification and possibly the nonlinear nature of buzz-saw tones at this engine operating condition. Overall, the approach captured the basic trends and provided a conservative estimate of liner effects from which relative performance metrics could be inferred

    An Investigation of Bifurcation Acoustic Treatment Effects on Aft-Fan Engine Nacelle Noise

    Get PDF
    Increasing air traffic and more stringent aircraft noise regulations continue to expand requirements on aircraft noise reduction capabilities for conventional and unconventional aircraft configurations. A major component of the overall aircraft noise is the sound associated with the propulsion system mounted in the engine nacelle. Acoustic liners mounted in the aircraft engine nacelles provide a significant portion of the current fan noise reduction. However, they must be further optimized if challenging noise reduction goals are to be achieved. One area within the aft bypass duct that may be an excellent candidate for increased attention is the acoustic treatment on the engine bifurcations (i.e., engine pylon and lower bifurcation). This paper describes a fundamental study of the effects of bifurcation treatment on simulated aft fan noise, as well as the validation of numerical tools to predict such effects. Five bifurcation configurations (four treated and one hardwall) were fabricated and tested in the NASA Langley Curved Duct Test Rig. Results show that mode scattering may occur due to both the presence of the bifurcation, as well as variable impedance distributions on the bifurcation surface. Future work will also include optimization of bifurcation treatments for testing in the Curved Duct Test Rig. These initial results are promising and this work provides valuable information for further study and improvement of the performance of bifurcation acoustic treatments

    Design of an Advanced Inlet Liner for the Quiet Technology Demonstrator 3

    Get PDF
    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broad frequency range. Thus, improved broadband liner designs must account for these constraints and take advantage of novel liner configurations. With these observations in mind, the development and assessment of a broadband acoustic liner optimization process has been pursued through a series of design and experimental studies. In this work, an advanced inlet liner was designed for a Boeing 737MAX-7 to reduce drag and to improve the broadband noise reduction relative to conventional liners in use today. Specifically, a three layer liner was designed, fabricated, and flight tested as part of the Quiet Technology Demonstrator 3 flight test program. Initial tonal predictions captured the behavior of the measured data very well and both prediction and measurements show an increased acoustic benefit at larger observer angles, particularly at the takeoff condition. Ultimately, flight test results showed the three degree-of-freedom liner to provide a 3.2 EPNdB cumulative inlet component benefit and a 0.7 EPNdB cumulative airplane benefit over the production liner. This excellent result provides valuable validation of the broadband liner design process, as well as the enhancements made to the overall approach. It also illustrates the value of the design process in concurrently evaluating various liner designs (i.e., SDOF, MDOF, etc.) and their application to various locations. Thus, the design process may be applied with further confidence to investigate novel liner configurations in future design studies

    Assessment of Axial Wave Number and Mean Flow Uncertainty on Acoustic Liner Impedance Education

    Get PDF
    A key parameter in designing and assessing advanced broadband acoustic liners to achieve the current and future noise reduction goals is the acoustic impedance presented by the liner. This parameter, intrinsic to a specific liner configuration, is dependent on sound pressure level and grazing flow velocity. Current impedance eduction approaches have, in general, provided excellent results and continue to be employed throughout the acoustic liner community. However, some recent applications have indicated a possible dependence of the educed impedance on the direction of incident waves relative to the mean flow. The purpose of the current study is to investigate this unexpected behavior for various impedance eduction methods based on the Pridmore-Brown and convected Helmholtz equations. Specifically, the effects of flow profile and axial wavenumber uncertainties on educed impedances for upstream and downstream sources are investigated. The uniform flow results demonstrate the importance of setting a correct Mach number value in obtaining consistent educed impedances for upstream and downstream sources. In fact, the consistency of results over the two source locations was greatly improved by a slight modification of the uniform flow Mach number. In addition, uncertainty in educed axial wavenumber was also illustrated to correlate well with differences in the educed impedances, even with modified uniform flow Mach number. Finally, while less straightforward than in the uniform flow case, it appears that modification of the mean flow profile may also improve consistency of results for upstream and downstream results when shear flow is included

    Broadband Liner Optimization for the Source Diagnostic Test Fan

    Get PDF
    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations

    Simulation of Sound Absorption by Scattering Bodies Treated with Acoustic Liners Using a Time-Domain Boundary Element Method

    Get PDF
    Reducing aircraft noise is a major objective in the field of computational aeroacoustics. When designing next generation quiet aircraft, it is important to be able to accurately and efficiently predict the acoustic scattering by an aircraft body from a given noise source. Acoustic liners are an effective tool for aircraft noise reduction, and are characterized by a complex valued frequency-dependent impedance, Z(w). Converted into the time-domain using Fourier transforms, an impedance boundary condition can be used to simulate the acoustic wave scattering of geometric bodies treated with acoustic liners. This work uses an admittance boundary condition where the admittance, Y(w), is defined to be the inverse of impedance, i.e., Y(w) = 1/Z(w). An admittance boundary condition will be derived and coupled with a time domain boundary integral equation. The solution will be obtained iteratively using spatial and temporal basis functions and will allow for acoustic scattering problems to be modeled with geometries consisting of both unlined and soft surfaces. Stability will be demonstrated through eigenvalue analysis

    On the Implementation and Further Validation of a Time Domain Boundary Element Method Broadband Impedance Boundary Condition

    Get PDF
    A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current time domain impedance boundary condition formulation, the instability can be effectively suppressed in computation. Proposed formulation and implementation are validated using NASA Langley Research Center Grazing Flow Impedance Tube (GFIT) experimental dataset with satisfactory results. Moreover, a minimization procedure for finding the poles and coefficients of the broadband multiple impedance model is formulated in this paper by which, unlike the commonly used vector-fitting method, passivity of the model is ensured. Numerical tests show the proposed minimization approach is effective for modeling liners that are commonly used in aeroacoustics applications

    Time Domain Boundary Element Method Prediction of Noise Shielding by a NACA 0012 Airfoil

    Get PDF
    As aircraft noise constraints become more stringent and the number/mixture of aircraft configurations grows, it becomes more important to understand the interaction of individual aircraft noise sources with nearby aircraft structures. Understanding these interactions and exploring possible approaches to mitigate or exploit their acoustic impact is essential for overcoming key noise barriers. This paper describes the further validation of a time domain boundary element approach for the prediction of the interactions between incident noise sources and nearby aircraft structures. Predictions were completed for multiple source locations and comparisons of these results with measured data are presented. Overall, very good agreement between the predicted and measured quantities was obtained in both the pressure time histories and pressure spectra. The effects of surface mesh resolution and source waveform are also presented. The very promising results demonstrate the capabilities of the time domain methodology employed in this study and provide further confidence in its continued development and application in future studies

    Low-Noise Operating Mode for Propeller-Driven Electric Airplanes

    Get PDF
    Mechanical shaft power and shaft speed of reciprocating internal combustion engines are closely coupled. Maximum rated shaft power is typically produced at or near peak shaft speed. If a general aviation airplane equipped with a reciprocating engine and a variable-pitch propeller attempts a low-noise takeoff by reducing propeller tip speed, propeller power and thrust are reduced. Such takeoffs are not tolerated due to punishing performance effects, such as increased field lengths and poor climb rates. Certain electric motors, however, are able to deliver maximum shaft power over a wide range of shaft speed. Electric or hybrid-electric propeller-driven airplanes should be able to exploit this behavior. At low shaft speeds, high shaft power levels and high blade pitch angles could be combined to recover much of the thrust that would otherwise be lost. This could enable a low-noise operating mode for propellers normally designed for performance rather than for noise. The subject of this paper is an analytical investigation into low-noise takeoffs and steady overflights of a notional general aviation airplane equipped with a propeller driven by an electric motor
    corecore