41 research outputs found

    Theracurmin inhibits intestinal polyp development in Apc‐mutant mice by inhibiting inflammation‐related factors

    Get PDF
    Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Therefore, it is important to establish useful methods for preventing CRC. One prevention strategy involves the use of cancer chemopreventive agents, including functional foods. We focused on the well‐known cancer chemopreventive agent curcumin, which is derived from turmeric. However, curcumin has the disadvantage of being poorly soluble in water due to its high hydrophobicity. To overcome this problem, the formation of submicron particles with surface controlled technology has been applied to curcumin to give it remarkably improved water solubility, and this derived compound is named Theracurmin. To date, the preventive effects of Theracurmin on hereditary intestinal carcinogenesis have not been elucidated. Thus, we used Apc‐mutant mice, a model of familial adenomatous polyposis, to evaluate the effects of Theracurmin. First, we showed that treatment with 10‐20 ”M Theracurmin for 24 hours reduced nuclear factor‐ÎșB (NF‐ÎșB) transcriptional activity in human colon cancer DLD‐1 and HCT116 cells. However, treatment with curcumin mixed in water did not change the NF‐ÎșB promoter transcriptional activity. As NF‐ÎșB is a regulator of inflammation‐related factors, we next investigated the downstream targets of NF‐ÎșB: monocyte chemoattractant protein‐1 (MCP‐1) and interleukin (IL)‐6. We found that treatment with 500 ppm Theracurmin for 8 weeks inhibited intestinal polyp development and suppressed MCP‐1 and IL‐6 mRNA expression levels in the parts of the intestine with polyps. This report provides a proof of concept for the ongoing Theracurmin human trial (J‐CAP‐C study)

    Mitochondrial intermediate peptidase is a novel regulator of sirtuin-3 activation by caloric restriction

    Get PDF
    Sirtuin-3 (SIRT3) regulates mitochondrial quality and is involved in the anti-ageing and pro-longevity actions of caloric restriction (CR). Here, we show that CR upregulates the mature form of SIRT3 and mitochondrial intermediate peptidase (MIPEP), a mitochondrial signal peptidase (MtSPase), in white adipose tissue. We also demonstrate that upregulation of mature SIRT3 is dependent on MIPEP in 3T3-L1 cells, suggesting that MIPEP may contribute to the maintenance of mitochondrial quality during CRvia activation of SIRT3. This novel mechanism of SIRT3 activation through MIPEP facilitates the elucidation of additional molecular pathways of CR

    Effects of Cooking End-point Temperature and Muscle Part on Sensory ‘Hardness’ and ‘Chewiness’ Assessed Using Scales Presented in ISO11036:1994

    No full text
    Texture and ‘tenderness’ in particular, is an important sensory characteristic for consumers’ satisfaction of beef. Objective and detailed sensory measurements of beef texture have been needed for the evaluation and management of beef quality. This study aimed to apply the sensory scales defined in ISO11036:1994 to evaluate the texture of beef. Longissimus and Semitendinosus muscles of three Holstein steers cooked to end-point temperatures of 60°C and 72°C were subjected to sensory analyses by a sensory panel with expertise regarding the ISO11036 scales. For the sensory analysis, standard scales of ‘chewiness’ (9-points) and ‘hardness’ (7-points) were presented to the sensory panel with reference materials defined in ISO11036. As a result, both ‘chewiness’ and ‘hardness’ assessed according to the ISO11036 scales increased by increasing the cooking end-point temperature, and were different between Longissimus and Semitendinosus muscles. The sensory results were in good agreement with instrumental texture measurements. However, both texture ratings in this study were in a narrower range than the full ISO scales. For beef texture, ISO11036 scales for ‘chewiness’ and ‘hardness’ are useful for basic studies, but some alterations are needed for practical evaluation of muscle foods

    SREBP-1c-Dependent Metabolic Remodeling of White Adipose Tissue by Caloric Restriction

    No full text
    Caloric restriction (CR) delays the onset of many age-related pathophysiological changes and extends lifespan. White adipose tissue (WAT) is not only a major tissue for energy storage, but also an endocrine tissue that secretes various adipokines. Recent reports have demonstrated that alterations in the characteristics of WAT can impact whole-body metabolism and lifespan. Hence, we hypothesized that functional alterations in WAT may play important roles in the beneficial effects of CR. Previously, using microarray analysis of WAT from CR rats, we found that CR enhances fatty acid (FA) biosynthesis, and identified sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA synthesis, as a mediator of CR. These findings were validated by showing that CR failed to upregulate factors involved in FA biosynthesis and to extend longevity in SREBP-1c knockout mice. Furthermore, we revealed that SREBP-1c is implicated in CR-associated mitochondrial activation through the upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Notably, these CR-associated phenotypes were observed only in WAT. We conclude that CR induces SREBP-1c-dependent metabolic remodeling, including the enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α in WAT, resulting in beneficial effects

    Effects of Ash Composition and Combustion Temperature on Reduced Particulate Matter Emission by Biomass Carbonization.

    Get PDF
    Thermochemical pretreatment, including carbonization, has been suggested as a method to reduce particulate matter (PM) emissions during the combustion of biomass. However, the carbonization efficiency might not be equal for all types of biomass because of composition heterogeneity and differences in combustion conditions. Therefore, an assessment of PM emission reduction by carbonization of various types of biomass at different combustion temperatures is required. In this study, seven different types of biomass (larch, poplar, miscanthus, bamboo grass, rice straw, rice husk, and dairy manure) and their biochars (prepared at 400 °C) were combusted at 650, 750, and 850 °C. The results showed that PM emission was reduced as much as 95.45% after carbonization as a result of volatile matter removal. The efficiency of PM reduction was greatest at low combustion temperatures for all feedstocks. Although the combustion temperatures did not strongly affect PM emissions from low-ash (??6.7%) biomass, higher heating temperatures (??750 °C) stimulated PM emissions from ash-rich rice straw and dairy manure biochar. The transformation of minerals in rice straw, rice husk, and dairy manure was also investigated at different combustion temperatures (650, 750, and 850 °C). Mineral analysis revealed that enhanced PM emission from ash-rich biochar samples was attributable to a greater concentration of Na and K, which likely resulted from melting at higher combustion temperatures. We found that carbonization can substantially reduce PM emissions for low-alkali-containing biomass and that a lower combustion temperature of biochar is preferable to suppress PM emissions for high-alkali-containing biomass. Our findings reveal a possible approach to waste-to-energy production with reduced health risks

    Effects of pyrolysis temperature and feedstock type on particulate matter emission characteristics during biochar combustion

    Get PDF
    Aiming to reduce the emission of particulate matter (PM) during biomass combustion, we investigated the effects of pyrolysis temperature and feedstock type on the chemical properties of biochar and PM emission characteristics during subsequent combustion. Wood- and manure-based char samples were prepared at pyrolysis temperatures ranging from 200 to 500 °C and combusted in a laboratory-scale tube furnace at 850 °C. Due to the removal of volatile matter (VM), the total PM emission factor (EF) of the wood char decreased with increasing pyrolysis temperature, becoming negligible with pyrolysis at temperatures over 400 °C. For manure char, although pyrolysis removed VM and reduced the total PM EF from 12.5 ± 2.7 to 5.8 ± 2.9 mg/g-fuel, the high ash content precluded any effect on the emission of ash-derived PM. The occurrence of ash-derived PM resulted from release of Na, Mg, K, and Ca and was enhanced at higher combustion temperatures. We demonstrated that the pyrolysis of low-ash biomass effectively reduces the risk of PM emission. However, the efficacy of thermal treatment of high-ash biomass is limited but might be improved with further treatment, such as ash removal

    Negative magnetostrictive paper formed by dispersing CoFe2O4 particles in cellulose nanofibrils

    No full text
    Polymers are often combined with magnetostrictive materials to enhance their toughness. This study reports a cellulose nanofibril (CNF)-based composite paper containing dispersed CoFe2O4 particles (CNF-CoFe2O4). Besides imparting magnetization and magnetostriction, the incorporation of CoFe2O4 particles decreased the ultimate tensile strength and increased the fracture elongation of the CNF-CoFe2O4 composite paper. CNF was responsible for the tensile properties of CNF-CoFe2O4 composite paper. Consequently, the magnetic and magnetostrictive properties and tensile properties of CNF-CoFe2O4 composite paper can be controlled by changing the mixture ratio of CNF and CoFe2O4 particles
    corecore