235 research outputs found

    Tendon adaptations to eccentric exercise and the implications for older adults

    Get PDF
    © 2019 by the authors. The purpose of this short review is to discuss the effects of eccentric exercise in modifying the properties of tendon tissue in healthy individuals. The tendon provides a mechanical link between muscle and bone, allowing force transmission to the skeleton, and thus, its properties have significant functional implications. Chronic resistance training has long been shown to increase the stiffness and Young’s modulus of the tendon and even tendon cross-sectional area. However, as the tendon responds to the amount and/or frequency of strain, it has been previously suggested that eccentric training may result in greater adaptations due to the potential for greater training loads. Thus, this review discusses the effects of eccentric training upon healthy tendon tissue and compares these to other training modalities. Furthermore, it has been reported that the tendon may undergo adverse age-related changes. Thus, this review also discusses the potential application of eccentric resistance training as a preferential modality for counteracting these age-related changes. We conclude that while there may be no difference between contraction types for overall tendon adaptation, the lower demands of eccentric contractions may make it more appealing for the elderly population

    Muscle size and strength : debunking the “completely separate phenomena” suggestion

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-017-3616-

    Muscle and tendon adaptations to moderate load eccentric vs. concentric resistance exercise in young and older males.

    Get PDF
    Resistance exercise training (RET) is well-known to counteract negative age-related changes in both muscle and tendon tissue. Traditional RET consists of both concentric (CON) and eccentric (ECC) contractions; nevertheless, isolated ECC contractions are metabolically less demanding and, thus, may be more suitable for older populations. However, whether submaximal (60% 1RM) CON or ECC contractions differ in their effectiveness is relatively unknown. Further, whether the time course of muscle and tendon adaptations differs to the above is also unknown. Therefore, this study aimed to establish the time course of muscle and tendon adaptations to submaximal CON and ECC RET. Twenty healthy young (24.5 ± 5.1 years) and 17 older males (68.1 ± 2.4 years) were randomly allocated to either isolated CON or ECC RET which took place 3/week for 8 weeks. Tendon biomechanical properties, muscle architecture and maximal voluntary contraction were assessed every 2 weeks and quadriceps muscle volume every 4 weeks. Positive changes in tendon Young's modulus were observed after 4 weeks in all groups after which adaptations in young males plateaued but continued to increase in older males, suggesting a dampened rate of adaptation with age. However, both CON and ECC resulted in similar overall changes in tendon Young's modulus, in all groups. Muscle hypertrophy and strength increases were similar between CON and ECC in all groups. However, pennation angle increases were greater in CON, and fascicle length changes were greater in ECC. Notably, muscle and tendon adaptations appeared to occur in synergy, presumably to maintain the efficacy of the muscle-tendon unit

    Effects of short-term unloading and active recovery on human motor unit properties, neuromuscular junction transmission and transcriptomic profile

    Get PDF
    Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. (Figure presented.). Key points: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes

    A System for the Synchronized Recording of Sonomyography, Electromyography and Joint Angle

    Get PDF
    Ultrasound and electromyography (EMG) are two of the most commonly used diagnostic tools for the assessment of muscles. Recently, many studies reported the simultaneous collection of EMG signals and ultrasound images, which were normally amplified and digitized by different devices. However, there is lack of a systematic method to synchronize them and no study has reported the effects of ultrasound gel to the EMG signal collection during the simultaneous data collection. In this paper, we introduced a new method to synchronize ultrasound B-scan images, EMG signals, joint angles and other related signals (e.g. force and velocity signals) in real-time. The B-mode ultrasound images were simultaneously captured by the PC together with the surface EMG (SEMG) and the joint angle signal. The deformations of the forearm muscles induced by wrist motions were extracted from a sequence of ultrasound images, named as Sonomyography (SMG). Preliminary experiments demonstrated that the proposed method could reliably collect the synchronized ultrasound images, SEMG signals and joint angle signals in real-time. In addition, the effect of ultrasound gel on the SEMG signals when the EMG electrodes were close to the ultrasound probe was studied. It was found that the SEMG signals were not significantly affected by the amount of the ultrasound gel. The system is being used for the study of contractions of various muscles as well as the muscle fatigue

    Quadriceps force generation in patients with osteoarthritis of the knee and asymptomatic participants during patellar tendon reflex reactions: an exploratory cross-sectional study

    Get PDF
    BACKGROUND: It has been postulated that muscle contraction is slower in patients with osteoarthritis of the knee than asymptomatic individuals, a factor that could theoretically impair joint protection mechanisms. This study investigated whether patients with osteoarthritis of the knee took longer than asymptomatic participants to generate force during reflex quadriceps muscle contraction. This was an exploratory study to inform sample size for future studies. METHODS: An exploratory observational cross sectional study was carried out. Two subject groups were tested, asymptomatic participants (n = 17), mean (SD) 56.7 (8.6) years, and patients with osteoarthritis of the knee, diagnosed by an orthopaedic surgeon, (n = 16), age 65.9 (7.8) years. Patellar tendon reflex responses were elicited from participants and measured with a load cell. Force latency, contraction time, and force of the reflex response were determined from digitally stored data. The Mann-Whitney U test was used for the between group comparisons in these variables. Bland and Altman within-subject standard deviation values were calculated to evaluate the measurement error or precision of force latency and contraction time. RESULTS: No significant differences were found between the groups for force latency (p = 0.47), contraction time (p = 0.91), or force (p = 0.72). The two standard deviation measurement error values for force latency were 27.9 ms for asymptomatic participants and 16.4 ms for OA knee patients. For contraction time, these values were 29.3 ms for asymptomatic participants and 28.1 ms for OA knee patients. Post hoc calculations revealed that the study was adequately powered (80%) to detect a difference between the groups of 30 ms in force latency. However it was inadequately powered (59%) to detect this same difference in contraction time, and 28 participants would be required in each group to reach 80% power. CONCLUSION: Patients with osteoarthritis of the knee do not appear to have compromised temporal parameters or magnitude of force generation during patellar tendon reflex reactions when compared to a group of asymptomatic participants. However, these results suggest that larger studies are carried out to investigate this area further

    Absence of an ageing-related increase in fibre type grouping in athletes and non-athletes.

    Get PDF
    The ageing-related loss of muscle mass is thought to be partly attributable to motor neuron loss and motor unit remodelling that result in fibre type grouping. We examined fibre type grouping in 19- to 85-year-old athletes and non-athletes and evaluated to which extent any observed grouping is explained by the fibre type composition of the muscle. Since regular physical activity may stimulate reinnervation, we hypothesised that fibre groups are larger in master athletes than in age-matched non-athletes. Fibre type grouping was assessed in m. vastus lateralis biopsies from 22 young (19-27 years) and 35 healthy older (66-82 years) non-athletes, and 14 young (20-29 years), 51 middle-aged (38-65 years) and 31 older (66-85 years) athletes. An 'enclosed fibre' was any muscle fibre of a particular type surrounded by fibres of the same type only. A fibre type group was defined as a group of fibres with at least one enclosed fibre. Only type II fibre cross-sectional area (FCSA) showed an age-related decline that was greater in athletes (p < 0.001) than in non-athletes (p = 0.012). There was no significant age-related effect on fibre group size or fibre group number in athletes or non-athletes, and the observed grouping was similar to that expected from the fibre type composition. At face value these observations do 1) neither show evidence for an age-related loss and remodelling of motor units nor 2) improved reinnervation with regular physical activity, but 3) histological examination may not reveal the full extent of ageing-related motor unit remodelling

    The prevalence of malnutrition according to the new ESPEN definition in four diverse populations

    Get PDF
    © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism.Background & aims: Consensus on the definition of malnutrition has not yet been reached. Recently, The European Society for Clinical Nutrition and Metabolism (ESPEN) proposed a consensus definition of malnutrition. The aim of the present study was to describe the prevalence of malnutrition according to the ESPEN definition in four diverse populations. Methods: In total, 349 acutely ill middle-aged patients, 135 geriatric outpatients, 306 healthy old individuals and 179 healthy young individuals were included in the study. Subjects were screened for risk of malnutrition using the SNAQ. The ESPEN definition of malnutrition, i.e. low BMI (< 18.5 kg/m2) or a combination of unintentional weight loss and low FFMI or low BMI was applied to all subjects. Results: Screening identified 0, 0.5, 10 and 30% of the healthy young, the healthy old, the geriatric outpatients and the acutely ill middle-aged patients as being at risk of malnutrition. The prevalence of malnutrition ranged from 0% in the healthy young, 0.5% in healthy old individuals, 6% in the geriatric outpatients to 14% in the acutely ill middle-aged patients. Prevalence of low FFMI was observed in all four populations (14-33%), but concurred less frequently with weight loss (0-13%). Conclusions: Using the ESPEN definition, 0%-14% malnutrition was found in the diverse populations. Further work is needed to fully address the validity of a two-step approach, including risk assessment as an initial step in screening and defining malnutrition. Furthermore, assessing the predictive validity of the ESPEN definition is needed

    Effect of Acute Exposure to Moderate Altitude on Muscle Power: Hypobaric Hypoxia vs. Normobaric Hypoxia

    Get PDF
    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (~3%) and maximal strength (1RM) (~6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≄60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.This study has been supported by a Grant from the Ministry of education, culture and Sport of Spain, Reference 14/UPB10/07
    • 

    corecore