399 research outputs found

    Feasibility studies for light scattering experiments to determine the velocity relaxation of small particles in a fluid

    Get PDF
    An approach for measuring the non-Markoffian component in the relaxation mechanism of a Brownian particle is proposed which combines desirable features of both the shock wave experiment and conventional light scattering experiments. It is suggested that the radiation pressure generated by a C.W. laser be used to guide an individual spherical particle to terminal velocity. At an appropriate time, the beam intensity is suddenly lowered to a value at which the radiation pressure is negligible, and the ensuing velocity relaxation is measured directly

    Instability and entanglement of the ground state of the Dicke model

    Full text link
    Using tools of quantum information theory we show that the ground state of the Dicke model exhibits an infinite sequence of instabilities (quantum-phase-like transitions). These transitions are characterized by abrupt changes of the bi-partite entanglement between atoms at critical values κj\kappa_j of the atom-field coupling parameter κ\kappa and are accompanied by discontinuities of the first derivative of the energy of the ground state. We show that in a weak-coupling limit (κ1κκ2\kappa_1\leq \kappa \leq \kappa_2) the Coffman-Kundu-Wootters (CKW) inequalities are saturated which proves that for these values of the coupling no intrinsic multipartite entanglement (neither among the atoms nor between the atoms and the field) is generated by the atom-field interaction. We analyze also the atom-field entanglement and we show that in the strong-coupling limit the field is entangled with the atoms so that the von Neumann entropy of the atomic sample (that serves as a measure of the atom-field entanglement) takes the value SA=1/2ln(N+1)S_A={1/2}\ln (N+1). The entangling interaction with atoms leads to a highly sub-Poissonian photon statistics of the field mode.Comment: 4 pages, 3 figure

    Silica containing composite anion exchange membranes by sol–gel synthesis: a short review

    Get PDF
    This short review summarizes the literature on composite anion exchange membranes (AEM) containing an organo-silica network formed by sol-gel chemistry. The article covers AEM for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly (vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix. The most stringent requirements are high permselectivity and water flux for DD membranes, while high ionic conductivity is essential for electrochemical applications. Furthermore, the alkaline stability of AEM for fuel cell applications remains a challenging problem that is not yet solved. Possible future topics of investigation on composite AEM containing an organo-silica network are also discussed

    Matter-wave bistability in coupled atom-molecule quantum gases

    Full text link
    We study the matter-wave bistability in coupled atom-molecule quantum gases, in which heteronuclear molecules are created via an interspecies Feshbach resonance involving either two-species Bose or two-species Fermi atoms at zero temperature. We show that the resonant two-channel Bose model is equivalent to the nondegenerate parametric down-conversion in quantum optics, while the corresponding Fermi model can be mapped to a quantum optics model that describes a single-mode laser field interacting with an ensemble of inhomogeneously broadened two-level atoms. Using these analogy and the fact that both models are subject to the Kerr nonlinearity due to the two-body s-wave collisions, we show that under proper conditions, the population in the molecular state in both models can be made to change with the Feshbach detuning in a bistable fashion.Comment: 6 pages, 5 figure

    Fokker-Planck equation approach to optical bistability in the bad-cavity limit

    Get PDF
    In the general framework of the system size expansion of Van Kampen and Kubo, we consider the Fokker-Planck equation for a model of absorptive bistability in the bad-cavity limit. The physical system is described by the reduced atomic density operators after adiabatic elimination of the cavity field variables. Mapping of the master equation into c-number form according to the normal-ordering mapping scheme yields known results for the atomic fluctuations and correlation functions; however, it also leads to a Fokker-Planck equation with a non-positive-definite diffusion matrix. The symmetrical-order-mapping scheme eliminates this difficulty. The leading contribution to the system size expansion yields a Fokker-Planck equation for the symmetrical-ordered density function having a positive-definite diffusion matrix. The atomic expectation values and fluctuations previously derived from the quantum Langevin equations emerge naturally from this Fokker-Planck equation

    Optical bistability: a self-consistent analysis of fluctuations and the spectrum of scattered light

    Get PDF
    The main purpose of this paper is to study the behavior of the atomic fluctuations and the spectrum of the light transmitted by an absorptive bistable device. To this end we develop an approximation scheme based on the so-called system-size expansion and apply it to the quantum-mechanical Langevin equations for the atomic fluctuation operators. The Bonifacio-Lugiato mean-field equations for bistability are derived from the lowest-order approximation to the system-size expansion, while the atomic correlation functions result from the next-higher-order expansion. The calculated spectrum of the transmitted light exhibits line narrowing near the bistable thresholds, discontinuous formation of sidebands along the high-transmission branch of the device, and hysteresis effects

    Collective atomic effects in resonance fluorescence

    Get PDF
    We suggest that the statistical properties of the scattered radiation in resonance-fluorescence experiments may be affected significantly by the existence of atomic correlations. The scattered light spectrum from two- and three-atom collective systems has been calculated and compared with the one-atom spectrum. The differences are quite significant for weak fields, but become less pronounced as the intensity of the driving field is increased. In addition, we have calculated the scattered intensity correlation function for collectively interacting systems, and found that its behavior is very different from that of the single-atom intensity correlation function, both for weak and strong incident fields. The implications of our findings for the observation of photon antibunching are also discussed

    Absorption spectrum of optically bistable systems

    Get PDF
    The quantum-mechanical theory of optical bistability developed in an earlier paper is generalized to calculate the absorption spectrum (gain coefficient) of an optically bistable system in the presence of a weak probe field. The behavior of the gain coefficient on the cooperative branch and the single-atom branch is analyzed in detail

    Quantum analysis of optical bistability and spectrum of fluctuations

    Get PDF
    We discuss the approach to equilibrium and the fluctuations of a bistable system under dynamical conditions such that the field variables can be eliminated adiabatically. The atomic system evolves under the action of the coherent pumping of an external field and of collective and incoherent relaxation processes. The competition between pumping and relaxation effects causes the atomic steady-state configurations to depend discontinuously on the strength of the driving field. We derive an explicit expression for the spectrum of the forward-scattered light, which exhibits hysteresis and a discontinuous dependence on the driving-field amplitude

    Stability of proton exchange membranes in phosphate buffer for enzymatic fuel cell application: hydration, conductivity and mechanical properties

    Get PDF
    Proton-conducting ionomers are widespread materials for application in electrochemical energy storage devices. However, their properties depend strongly on operating conditions. In bio-fuel cells with a separator membrane, the swelling behavior as well as the conductivity need to be optimized with regard to the use of buffer solutions for the stability of the enzyme catalyst. This work presents a study of the hydrolytic stability, conductivity and mechanical behavior of different proton exchange membranes based on sulfonated poly(ether ether ketone) (SPEEK) and sulfonated poly(phenyl sulfone) (SPPSU) ionomers in phosphate buffer solution. The results show that the membrane stability can be adapted by changing the casting solvent (DMSO, water or ethanol) and procedures, including a crosslinking heat treatment, or by blending the two ionomers. A comparison with Nafion(TM) shows the different behavior of this ionomer versus SPEEK membranes
    corecore