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Optical bistability: A self-consistent analysis of fluctuations
and the spectrum of scattered light
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The main purpose of this paper is to study the behavior of the atomic fluctuations and the spectrum of the
light transmitted by an absorptive bistable device. To thih end we develop an approximation scheme based on
the so-called system-size expansion and apply it to the quantum-mechanical I.angevin equations for the
atomic fluctuation operators. The Bonifacio-Lugiato mean-field equations for bistability are derived from the
lowest-order approximation to the system-size expansion, while the atomic correlation functions result from
the next-higher-order expansion. The calculated spectrum of the transmitted light exhibits line narrowing
near the bistable thresholds, discontinuous formation of sidebands along the high-transmission branch, of the
device, and hysteresis eA'ects.

I. INTRODUCTION

The recent observation of optical bistability"
has stimulated considerable interest in the ex-
perimental' ' and theoretical' " implications of
the effect. In part, the present excitemept is
owing to the possibility that bistable optical. de-
vices may eventually find applications as min-
iaturized memory units, amplifiers with high
differential gain, and pulse shapers, limiters,
and clippers. ' In addition, a bistable system,
such as a Fabry-Perot cavity containing an ab-
sorbing medium, is of theoretical interest as an
example of an open system, "driven to a station-
ary nonequilibrium state by an external source.
It is known that, when an open system is driven
sufficiently far from thermodynamic equilibrium,
its state may "jump" from the thermodynamic
branch to some other steady-state configuration.
These new steady states have been cal.led "dis-
sipative structures. "'4

In the case of optical bistabil. ity, discontinuous
transitions can be induced from the so-called
cooperative branch (thermodynamic branch) to the
single-atom branch (dissipative structure) and
vice versa by varying. the strength of the external
driving field. '

This behavior, which is the consequence of the
competition betwt;en cooperative and uncorrelated
atomic motion in the absorbing medium, bears
a close resemblance to ordinary first-order
phase transitions in thermodynamic-equilibrium
systems. " The similarity is far from accidental;
indeed, the existence of a 1-1 mapping has been
established between the equilibrium and non-
equilibrium equations of state for systems that

exhibit absorptive bistability. In fact, both
equilibrium configuration and nonequilibrium
steady states have been identified with the cusp
catastrophe manifold. "

The first detailed study of absorptive bistability
was proposed by Bonifacio and Lugiatoo in terms
of a simple mean-field quantum-mechanical
model. In the semiclassical approximation, the
model. .is exactly soluble and leads to a precise
analytic description of the bistable operation,
threshold conditions, and hysteresis propertieh.
It also provides a unified description of single-
mode superfluorescence, "bistability, and res-
onance fluorescence" "indicating how the inter-
play of collective and single-atom dynamics can
give rise to quite different transient and steady-
state behaviors. " In addition, new and striking
predictions have emerged concerning the relaxa-
tiori properties of the atomic system and the be-
havior of the spectrum of the transmitted and of
the fluorescence light.

The predictions concerning the fluorescence
spectrum are especially interesting because they
stand in sharp contrast with the well-known be-
havior of the single-atom resonance-fluorescence
spectrum: in the ease of ordinary resonance
fluorescence" the scattered spectrum consists of
a single'broadened line when the driving field
strength is below a certain threshold value; above
threshold, the spectrum develops continuously a
symmetric pair pf sidebands which are displaced
from the central component by an amount propor-
tional to the driving Habi frequency. "'"

On the contrary, in the case of a bistable
system, Bonifaeio and Lugiato have predicted
line narrowing in the vicinity of the bistability
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threshold, the sudden appearance of sidebands
above threshold and hysteresis properties, as the
strength of the driving mechanism is changed
quasistatically in an appropriate way.

The semiclassical description of the steady-
state condition of the atoms, coupled to a rea-
sonable regression hypothesis, is sufficient to
describe the relaxation properties of ihe system.
If, on the other hand, one is interested in the
shape of the spectrum of the fluctuations, the
behavior of appropriate atomic correlation func-
tions must be calculated explicitly.

In this paper we address ourselves to this
problem with the main goal. of deriving the shape
of the spectrum of the transmitted light for bi-
stable optical systems.

Our approach stems from the following consid-
erations: bistable action results from the com-
petition between the external coherent pump, the
collective-atomic-decay process into the reso-
nant-cavity mode, and the incoherent atomic re-
laxation owing to spontaneous emission.

Each of these three processes is modeled by a
distinct contribution to a master equation""
that describes the evolution of the reduced atomic-
density operator. The master equation is con-
structed in the Born and Markov approximations,
and upon adiabatic elimination of the cavity-
field operators. Our calculations are appropriate
-if the cavity field relaxes over a time scale which
iy short compared to both the collective and in-
coherent atomic relaxation times. If the field
relaxation time should exceed the atomic-decay
times, a different formul. ation is required as
pointed out by Bonifacio and Lugiato" and, in-
dependently, by Willis. "

In Sec. II of this paper, we discuss the atomic
master equation and review the known steady-
state solutions for the atomic and field expecta-

. tion values.
In Sec. III we develop an approximation method

based on the system-size expansion" "and apply
it to the quantum-mechanical Langevin equations.
We calculate the atomic-diffusion coefficients
from the generalized Einstein relations and con-
struct a set of coupled equations for the atomic
correlation functions of interest.

The mean-field equations of Bonifacio and
I ugiato originate from the Iowest-order term
of the system-size expansion, while the correla-
tion functions result from the next-higher-order
correction. These equations are shown to agree
with those derived in Ref. 11 using the regression
theorem and a Gaussian decoupling approximation.

In Sec. IV, we derive the spectrum of the
transmitted light and analyze the behavior of its
three components as the system is driven across

the bistability thresholds.
The spectral narrowing exhibited near thresh-

old is shown to be the consequence of the onset
of a soft mode. ' The mathematical origin of
the soft mode is reviewed in Appendix A, where
we analyze the eigenvalues of the relaxatiori
matrix that governs the system's approach to
steady state from a slightly perturbed configura-
tion. We also show explicitl. y the effect of the
soft mode and the accompanying critical sl.owing
down on the approach to steady state of the atomic
variabl. es.

In Appendix 8, we present calculations to show
that the system-size expansion is consistent with
the positive definiteness of the density matrix.
Appendix C is devoted to the calculations based
on the Gaussian decoupling schemes. Finally,
Appendix D deals with a model, describing the
resonance fluorescence from a col.leetive atomic
system, and discussed the relation of this model.
with the one presented in the main text of the

I

present paper.

II. ATOMIC MASTER EQUATION

The interaction of an external source of radia-
tion with an absorbing medium causes attenuation
of the incident light and excitation of some of the
atoms: the atoms, in turn, decay spontaneously
and lsotroplcally.

If the absorbing medium is placed inside a
resonant cavity, one of the cavity modes may be
made to assume a privileged role. Under appro-
priate conditions strong collective emission into
one of the cavity modes will occur.

In describing the atomic evolution under the
action of an external driving field, we consider
explicitly the following physical processes: (a)
the interaction of the atoms with the external, field;
(b) the incoherent decay of each atom by spon-
taneous emission; (c) the cooperative atomic
interaction and the col.l.ective emission into a
single mode of the cavity.

In our model, we assume perfect resonance
between the driving field, one of the empty cavity
modes, and the atomic absorption line. This
idealized physical system has been referred to as
an absorptive bistable device. ' The partially re-
flecting end mirrors of the cavity cause leakage
of the internal field to the outside at a rate given
by.x=c(1-R)/6, where 8 is the ref lectivity of
the mirrors and L the cavity length. We assume
the field damping rate w to be much larger than
the collective and single-atom relaxation rates.
This enables us to eliminate the internal-field
operators adiabatically. "

In the Born and Markov approximations, and iri
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the unitary frame rotating at the angular fre-
quency of the driving field, the master equation
for the reduced atomic-density operator becomes

dS'
iQ-, [S'+S , W-]+A, W+A„W. (2.1)

(S &
= -y~(S &- 2'Q~(SS&+ (S S3)

—(Ss) = -2y~ (S3)+ — —iQI (S') +iQr(S ),d - N

(2.4)- (2g /l&)(S'S ),
(S ) = (S') *.

Of course, Eqs. (2.4) do not form a closed set:
they can be closed by various decorrelation
schemes, one of the most frequently used being

The first term on the right-hand side of Eq. (2.1)
which is proportional. to the Babi frequency Ql
of the incident field describes the reversible
coherent interaction of the atoms with the external
classical field. The other two terms describe
the collective and single-atom irreversible decay,
respectively. The collective decay term is
given by

AgW=(2g'/K)(S W'S' —g WS'S —2S'S W),

(2 2)

where 8' and 8 are the collective atomic-polar-
ization operators, g is the atom-field coupling
constant, and a is the inverse photon lifetime in
the cavity. The singl. e-atom decay term is

N

A~W = g y~ ([s&, Ws'; ]+ [s, W, s'; ]), (2.3)

where s& and s& are the individual atomic-polar-
ization operators and y~ is the coherent relaxa-
tion rate (for simplicity we take the longitudinal
relaxation rate y~~ to be twice the transverse re-
laxation rate y~).

For the purpose of carrying out an accurate
analysis of the approach to steady state and of
the atomic fig.ctuations, it wouM be desirable to
map Eq. (2.1) into a c-number differential equa-
tion for a quasiprobability distribution. This
procedure has been adopted successfully in the
past. ' Here the simultaneous presence of col-
lective and single-atom operators in the master
equation makes the mapping process less straight-
forward, especially if one wishes to use the co-
herent-atomic-state repr esentation. " Attempts
along this line are in progress. "

As a first cut to the problem we consider instead
the equations of motion for the atomic expecta-
tion values. The derivation of these equations
from Eq. (2.1) is straightforward. The result is

a =—(a) =-(g/x)S. (2.6)

The steady-state properties of the bistable system
can be summarized in terms of the long-time
expectation values

S,(~) =-~N[1/(1+x')],
S(~) = (N/v 2 )[x/(1 x+')],

(2.7)

where x = v 2 (Q, +ga)/y, is proportional to the
transmitted field amplitude, and of the cubic
equation

y =x+ 2cx/(1+x') (2.8)

which relates the transmitted field x to the incident
field y, and the atomic density c.

It is apparent from Fig. 1, thatx is a single-valued
function of y for c & 4, and that instead, for c & 4 and

y „&y&y, thetransmittedfieldamplitudeisa
multivalued function of y. The steady-state values
x, and x, are stable solutions, while x, is unstable and
cannot be realized.

When c&4, the steady-state properties of the
atomic system can be summarized as follows.

(a) Along the low transmission branch of the
state equation y =y(x), the atomic expectation
values are not extensive functions of N. This is
a direct manifestation of collective behavior.

(b) Along the high transmission branch, and
for large values of the driving field y, the atomic
expectation values are directly proportional to
the 'number of atoms in the cavity (single-atom
behavior dominates).

the straight factorization ansatz (e.g. , (S'Sg
=(S'&(Sg). The resulting nonlinear equations
have been discussed at length in Ref. 9. Here,
we limit ourselves to a brief summary of the con-
clusion.

in view of the initial conditions (S'(0)) =(S (0))=0,
and (S,(0))= —,N it—isclear that (S'(t)), (S (t)) are
purely imaginary at all times. Thus, Eqs. (2.4)
are equivalent to

dS . 4c—=-S —&2yS + —SS
dt 3 ~ 3&

(2.5)
dS, 4c' = -2 S + — +RyS ——S'

N

where S = -i(S') =i(S ) and S, =(S,). The dimen-
sionless time v is defined as y~t; the parameter
y = v2Qz/y~ is proportional to the driving field
amplitude and c =g'N/2xy~ provides a measure of
the atomic density in the cavity. The internal field
is adiabatically linked to the atomic polarization
as follows:
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FIG. 1. Set of state equations y=y(x) for {1)c=3,
(2) c = 6, {3)c=10. The steady-state values of z
corresponding to those segments of the state equation
characterized by negative slope {dy/dx & 0) are unstable
against perturbations. For the interesting case c» 1 it
has become customary to refer to the low and high
transmission branches as the cooperative and single-
atom branches, respectively.

(c) As y is increased beyond y from below,
or decreased past y;„ from above, the trans-
mitted field undergoes a sharp discontinuity.
Correspondingly, the atomic expectation values
undergo a discontinuous transition.

(d) The hysteresis of the transmitted field and
of the atomic expectation values is a consequence
of the so-called delay convention. " In an exact
description, we guess that the two possible
steady-state values of x for a fixed y in the range
y . &y&y should correspond to a pair of local
maxima of the atomic quasiprobability distribu-
tion. In the mean-field-theory approximation, the
gradual transition from one configuration to the
other is replaced by a discontinuous jump at the
bistability thresholds y,„and y;„.

An interesting visualization of the drastic dif-
ference between the approach to equilibrium along
the cooperative and the single-atom branches is
provided by the numerical integration of Eqs.
(2.5). In Fig. 2 we show the approach to steady
state of the atomic population difference for
different values of the driving fields. Just below
the upper threshold (curve 1), the population dif-
ference approaches steady state monotonically,
while, just above threshold (curve 2), the approach
to steady state is oscil. latory. Furthermore, the
steady-state values corresponding to Curves 1 and

FIG. 2. Transient behavior of the atomic population
(83(v)) /N for different values of the driving field
amplitude y. In curve {1),y is just below threshold for

.bistable switching and the approach to steady states is
monotonic. In curve {2), y is just above the switching
threshold; the atomic population approaches a new
steady-state value in an oscillating fashion. In curve
{3),y is somewhat higher than the threshold value; the
approach to steady state is qualitatively the same as in
case {2)but the evolution occurs over a significantly
shorter time scale.

2 are very different, with almost complete satura-
tion being predicted in the latter case.

An interesting feature of this solution is the
length of time required to reach steady state,
approximately 20 atomic lifetimes for the chosen
value of y in curve 1. Upon increasing y further
up above threshold, no additional qualitative
changes are observed in the approach to steady
state except for a considerable reduction of the
overall time scale.

III. ATOMIC FLUCTUATIONS AROUND THE MEAN

In this section, we analyze the fluctuation and
relaxation properties of the atomic system in
the neighborhood of the steady state. Our approach
is based on the system-size expansion as de-
veloped by Kubo, Van Kampen, and others in the
context of the classical theory of stochastic pro-
cessess."" In this problem, special care must
be exercised with the handling of the quantum
aspects, because quantum correlation effects
contribute correction terms of the same order
of magnitude (1/N, where N is the number of
atoms) as the ordinary fluctuations around the
mean.

In what follows we apply the method of the
system-size expansion to the quantum-mechan-
ical Langevin equations. '4 We define the scaled
operators xi'l =(1/N)S"', x"' = (I/N)S, . From
the master equation (2.1) one can construct the
following Langevin equations:
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(+}
= -x" + 4cx"x'" —Piiyx'" + —E",

d7' vÃ

ax'-' =-x +4cx' x ~+~2iyx ' + —E
dr vÃ

(D„(t))=(D (t))*=(D„(t))=(D, (t))

(D„(t))=(-'+x~' (t)) +2c(x ' (t)x (t)) .
(3.8a)

ax'" =-2 x3 + —
I
—4cx' x

dr 2] (3.1)
We note that if one adopts the normal ordering
convention, i.e.,

1 3)/~2)(g4) x(-)) + —p»
(:Eg(t)E,(t'):) =2(a;,(t)) 5(t —t'),

one finds

(3.8b)

where 5 '~ and E '~ are 5-correlated random
operators. Their stochastic properties can be
summarized as follows:

(E(+)(t)) (E(s) (t)) 0

(E~' (t)E~ ~(t'))=2(D, (t))5(t-t'),

(E "(t)E '(t')) =2(D, (t))5(t-t'),

(F ' (t)E ' (t')) =2(D, (t)) 5(t - t'),

(E '(t)F '(t')) = 2(D (t)) 5(t —t') .
Clearly, E ' and E ' do not commute with one
another; for example, we have

(E (t)F ' (t')) =2(D, (t))5(t —t'),

(3.2)

(3.3)

(3.4)

where

(D, (t)) ~(D. (t)). (3 8)

2(D~„(t)) = —(M(t)N(t)) —(A~(t)N(t))

—(M(t)Ag(t)),

where A.„and A„are the Langevin forces

M =A.~ +E~

(3.8)

(3.7)

and M is one of the system operators.
From the master equation (2.1) and from Eq.

(3.6) one arrives at the following diffusion coef-
ficients:

In general, the random operators are not Gaussian
in nature. However, since the behavior of the
system is Markovian, it follows that

(A(0)E'(t)B(0)) = 0, t & 0.
The values of the diffusion constants are obtained
from the generalized Einstein relation"

($,.(t)) =(S (t))*=2c(x"(t)xt '(t))

—(&y/r 2 )(xi'~ (t))

(&,(t)) =(-'+x~'~(t)) -2c(xt'~(t)xi ~(t))

—(iy/2 &2)(x"(t) —x& -'(t)),

(S, (t)) =(S (t)) =(Q, (t)) =0.

(3.8c)

The normal ordering convention is not reaI. ly
needed, except when calculating the equations for
the normally ordered diffusion matrix [see Eq.
(3.19) below]. It should also be noted that no ap-
proximations have been carried out thus far (ex-
cept of course those which are required in the
derivation of the master equation).

It is also important to observe that the fluctuat-
ing-operator forces are weighted by the parame-
ter 1/vÃ and that, as a consequence, the relative
fluctuations of the observable quantities are of
order 1/N This fac.t enables us to carry out the
above-mentioned expansion in powers of 1/VÃ.

To this purpose, we introduce the'fluctuation
operators y

' and y
' defined by

xi' =x~,'+(1/~N)y~'~, xi'~ =x~,'~+(1/WN)yi", (3.9)

where x,' and x0' are c numbers, and expand
E ' and E ' in inverse powers of WN. To lowest
order in N "the Langevin equations (3.1) take
the form

x' =-x' +4cx'x ' —+2iyx '~
0 0 0 0 0

=-x +4cx,' x, +P2iyx, ', (3.10)

x"=-2 -'+9" -4cx"x'-'-'—(x &

0 2 0 0 0 2 0 0

The first-order correction to the Langevin equa-
tions (3.1) can be cast in the compact form

(" ',l (,"',l
y', =M(t)y, +E,(t), y, = y', '

-1+4cx~,'~ (t)

M(t) = 0

-iy/P2-4cxto '(t)

0 4cx' -&Riy)
-I+4cx (4) 4cx +44iy~',

iy/v 2 —4cxto' (t) -2

(3.11)
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where y,
' is the lowest-order term in y

' . The
new random operators E,' and Eo are again
5 correlated and have zero expectation values.
The diffusion constants are given by relations of
the type (3.3) with S replaced by 2)('), and

(D (t)& =2c(x,' (t))' —(iy/P2)x '
(t) =(g)( (t)&i,

(a» (t)) =(~+x,' (t)) -2cx,' (t)x, (t)

—(iy/2+)[x(0')(t)-x( '(t)j,
&n( )(t)& =&S,"'(t)& =&a")(t)& =0

(3.12)

and similar equations for (S&&(t)&. It is also clear
from the way the system-size expansion has been
carried out that (x(')) =x(0') + (terms of order
I/1V).

We note here several features of the above
quantum-mechanical Langevin equations.

(a) Equations (3.11) imply that (yo' (t)) =(y,' (t))
= 0 if, at time t = 0, (y,')) = (y(')) = 0.

Hence, in this case the expectation values of
the operators x ' and x ' will be given by

(x( )
(t)& x( ) (t) (x(3)(t)) x(3) (t) (3 13)

where x,' and x,' are solutions of the system of
Eq. (3.10). The identity of Eqs. (3.10) and of the
mean-field equation (2.5) provides a justification

y
(+)

g y(-) gi

C(t, t') = &y', '(t)y(. '(t')& ~

(c) The matrix M(t) in Eq. (3.14) is time de-
pendent for any initial-value problem except in
steady state, where Eq. (3.14) reduces to

(3.14)

of the system-size expansion.
(b) From Eq. (3.9) it is clear that

(x '(t)x' '(t')& =x, '(t)x', '(t')

+ (1/&) & y."&(t)y.&8&(t')& .
or

([x( '(t) - x', (t)][x(~'(t') -x,~'(t')]&

= (I/~)&y( ) (t)y(."(t')&.
Hence the fluctuations around the mean are de-
termined by the correlation between the operators
y,. In view of the Markovian character of our
system, we can derive immediately from Eqs.
(3.1) the following equations for the correlation
function:

—C(t, t') =M(t)C(t, t'), t&t'd

—C(t) =MC(t), C(t) = lim C(t+t', t'),d

i+4-() 0

0 -1+&ex(')

—(i/N )y —4cx( ) iy/A —4cx(')

4cx," eaiy)—
4cx&& + Niy (3.15)

where x,' and x,' are the steady-state solutions of Eqs. (3.10):

xo') —-+(z/v2)[x/(1+x )], x(o~) -—-~g[l/(1+x')]. (3.16)

(3.1V)

(3.18)

Upon substituting Eq. (3.16) into (3.15) we obtain the same set of equations which was derived in Ref. 11
using the regression theorem and a Gaussian decoupling approximation.

(d) We need equal-time expectation values of the type (y(0'(t)y( '(t)). To this purpose we define the
normal ordered correlation matrix o" (t) as follows:

y(+) p y(+) p y( )
p y(+) 'p y(3)

~")(t) = &y", (t)y'. '(t)& &y', '(t)y'. '(t)) &y(."(t)y'. '(t))
y(«) g y(3) g y(3) g y( )

g y( )
g y(3)

=-(:y&&(t)y&&(t):) .

In Eq. (3.18) the tilde denotes the transpose opera-
tor and:: implies normal ordering (y

' opera-
tors at the extreme l.eft, y operators at the
right, and y ') in between).

The equation of motion for the correlation matrix
o ~ follows readily from Eq. (3.11). The result is

o' (t) =M(t)o " + o'"'M(t)+ 2$ (3.19)

where

g)(0) g

(~(0) (t)& 0

&Ii."&&)&]

(3.20)

In deriving Eq. (3.19) it does not matter whether
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one uses the normal ordering convention or not.
If one uses the diffusion coefficients (3.8a), the
equation of motion for the diffusion matrix (3.19)
still holds. This is because the commutators

[ ', ]=(2/N)x, [x,x' ]=(1/At)

are of order 1/N. Hence, the right-hand side of
the commutation relations can be replaced by
«()and j)

The steady-state value of a " is given by the
solution of the linear matrix equation

and

-&ix
&2i«

-i N«A i+«A -2
1 0 0't

002

(3.22)

uo &"'+o''"'m+2u = 0,

where now

(3.21) A =1+2c/(1+x') =y/x, A = 1-y/2«.
The solution of the matrix equation (3.21) is

x 5 y+gx y 1+/ —2x Q

-v 2 x'5/y &2«'5/y+ —,
' x'/y(1+x') s5

&2xAII* x'/(1+x*))
(3.23)

where

1 g (y, I+~ I, x+2+A) (3.24)

order I/N owing to the fact that s& and ss& are
spin- —,

' operators, and that the contribution (3.26)
arises purely from the quantum-mechanical
properties of the system.

y/x+2x2(1- y/2x) & 0. (3.25)

Because the density matrix p is a positive definite
operator, we must show that the results of our
approximate calculations are consistent with the
positivity property of p. In Appendix 8, we prove
that this is indeed the case.
. Finally we point out that the diffusion matrix
o' ", as calculated, contains single-particle con-
tributions and corrections owing to two-particle
effects. For example, in the framework of
the single-particle approximation the element

is given by

o'I2' =(I/&')(&&'5 ) —&~'&&5' »

Sg S3 + S]Sg — Sg Sg
f~j !

Equation (3.23) contains'the stationary expectation
values that will be needed for the calculation of
the spectrum of the transmitted l.ight.

The analysis of the steady-state solution sum-
. marized in Appendix A shows that the stationary
state will be stable if

I ~ (y'/2g')x' (4.2)

The total intensity of the incoherent part, instead,
is proportional to &y~,'y, '):

Zx' (y (4.3)

1V. SPECTRUM OF THE TRANSMl1 I'ED LIGHT

In Sec. III we have carried out a systematic
analysis of the atomic fluctuations. We are now
in a position to calculate the correlation function
X,(t) =&6S'(t)5S (0)) which is related to the inco-
herent part of the spectrum of the transmitted
light. 3'

The correlation function &S'(t)S (0)) in steady
state is given by

&S'(i)S-(0)& =em&«&'&(i)x&-&(0)&

=fi'Ix" I'+N&y' (i)y'. '(o)& (4 1)

It is clear from Eq. (4.1) that the coherent part
of the spectrum is given by

S)Sg + . . Sg S) - S3 S~
gy

= (1/N~)(~N+ &Ss& —&S'&&S &/N)

= (I/At' )~«~/(I+«2)'. (3.26)

It is clear that 0'» contains contributions of (4.4)

I~ h is also positive definite along the stable
branches in view of Eq. (3.25). A plot of I h is
given in Fig. 3 for various values of y.
From Eq. (3.15) we find

x,(i) =&[(e"')„&y."y'. ') +(e"'),.& y'. 'y'. ')

+ (e+~)
&

y(3) y( )&]
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3.0
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APPENDIX A: EIGENVALUES OF THE RELAXATION
MATRIX

The following discussion contains a useful sum-
mary of some properties of the eigenvalues of
the relaxation matrix Mwhich are of interest in
this work. A detailed analysis can be found in .

Refs. 9 and 23.
The linearized mean-field limit of Eq. ('2.4) for

the atomic expectation values and Eq. (3.15) for
the atomic correlation function in steady state
can be cast into the form

dR
=MR (Al)

where the relaxation matrix Mis given by

and L. Lugiato, and useful suggestions and com-
ments by C. R. Willis. We are thankful to Bruce
Zielinski for his help with the preparation of
the manuscript. This work was partially supported
by the Office of Naval Research under Contract
No. N00014- V6-C-1082.

of the matrix Mvanishes at both the upper and
lower bistability thresholds. The immediate
consequence is that one of the normal modes of
relaxation becomes very long lived. This is the
reason why the spectrum of the atomic fluctua-
tions, and the incoherent part of the spectrum of
the transmitted light develop a dominating narrow
central component in the vicinity of both upper and
lower bistability threshoids (Figs. 4 and 5).

Another way to show the onset of the critical
slowing down near threshold is to perturb the
steady-state configuration of the atoms by sud-
denly changing the strength of the driving field,
and to observe the relaxation of the system to the
new steady state."

In Fig. 6, we show the relaxation to steady state
of the atomic population difference (S,)/N. We
require the atoms to be initially in'a cooperative
steady-state corresponding to a given value of the
driving field. A t =0 the external field is increased
suddenly to a slightly larger value. It is clear
that the evolution of (S,)/N is always monotonic

0 -i &2m)

0 i &2x

l(i/v 2 )(y —2x) (i /v 2-)(y —2x) -2

il S3(y)/N

4 = 1+2c/(1+xm) . (A2)

It is a simple matter to show that the eigenvalues
are given by

x, = -[1+2c/(1+x2)]

-(2+A) +((2+A.)' —8[A. —x(y —2x)JP
'

2

(A3)

The first eigenvalue is always real and negative.
The eigenvalues ~, and ~, can be complex. Their
real part will be negative provided

- 0.3

-0.35-

A. —x(y -2x)& 0. (A4) -0.4-

An elementary calculation shows that Eq. (A4)
coincides with the requirement

—&0
dx (A5)

where y is given by the state equation (2.8). For
a given value of c& 4 the cubic equation y(x)
shown in Fig. 1 consists of three branches: a
stable low-transmission cooperative branch
(0&y &y,„), a stable high-transmission single-
atom branch (y . &y &~) and an unstable branch
joining the maximum and the minimum. It is
clear both from Eqs. (A4) and (A5), and by con-
tinuity considerations that one of the eigenvalues

-0.45 I

l0

FIG. 6. Critical slowing down of the atomic param-
eters in the neighborhood of the upper bistability
threshold. In curves (1)-(5) the atomic population is
initially in a steady-state configuration characterized
by increasingly larger values of y along the coopera-
tive branch. The strength of the driving field is suddenly
increased by a small amount in each curve, and the
system relaxes to new steady-state values with longer
and longer relaxation times.
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) SOFT tioned, one of the roots approaches zero as y
approaches y;„ from above. This explains why
the sidebands in Fig. 5 merge continuously into
the central peak before the onset of the lower
instability.

Finally, it is of interest to observe that the
soft eigenvalue approaches zero at the bistability
threshold with a power law of the form

'&„« = (const}l y —y l~'. (A6)

This result was first demonstrated analytically for
large values of c by Bonifacio and Lugiato. In
Fig. 7, we compare the numerical values of X ft

with a &-power law in the vicinity of y,„.

MAX

FIG. 7. Behavior of the relaxation rate of the soft
mode in the neighborhood of the upper bistability
threshold. The solid curve represents the ~-power
law A, ~«= (ytb-y)' 2.1/2

(the eigenvalues of Mare all real). The approach
to the new steady state is characterized by a
decay time that becomes increasingly longer the
closer the system is to the threshold for bistable
switching.

It is a,iso interesting to observe, although this
is not apparent from Eq. (AS), that for decreasing
values of y along the single-atom branch, the
imaginary parts of the roots ~, and A3 vanish
before y reaches y;„.

Over a small range of values above y, the
roots ~, and ~, are real and, as already men-

Tr(WA A) ~0, Tr($'AA~) ~0 (B1)

must be true for any operator A. If we choose

A= ay ', i=+, —,3()
then Eq. (Bl) implies that

(B2}

g y ~2,((y(() y(O+)) )0

Therefore, the matrix

(BS)

APPENDIX B: POSITIVE DEFINITENESS OF THE
CORRELATION MATRIX

In Sec. III, we have carried out an analysis of
fluctuations around the mean values. Now we
want to verify that our approximation (system-
size expansion} is consistent with the require-
ment of positive definiteness of the density opera-
tor. It is cl.ear that the relations

(B4)

~+)y&+) j &(+) y(

) (y(-)y( )) —((y( ) y( &)) —((yi lyl l))

((y( ) yi'))) '((yi ) y(. ))) (y( )y( i)

should be positive definite. Our analysis of Sec. III will be consistent if we can show that the matrix o
constructed in the approximation of Sec. IV is positive definite.

On using Eq. (3.23) and the commutation relations of the operators y ', y ', the steady-state limit of
0 ' takes the form

(w)

y+j g 2 ]+g2

l
&2x25/y+ x'/y(I+x')

-i 6 ix /2 )) 2 (1+-x')

/2x'2/y+ x'/y(2 ~ x') i i / 2+x(12+/2)x
—&2x'5/y+ ~1/(1+x') -i5-ix/2))2 (1+x')

ii+ix/2/2(1+x') . i(2xi)2+-,'x'/(1+x*) )
(B5)

In order that m be positive definite, it &s necessary and sufficient that the following relations be
satisfied.

-2)2x'5/y+ I/2(1+xa)& 0,
deb '~' o-0

deto & 0.

(B6)

(»)
(B8)
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The matrix r' is defined

t -K2x'5/y+ I/2(1+x'} v2x'5/y+ —'x'/y(1+ ') }
( &2xs6/y+xs/2(1+x*}y - &2xsl/y+ —s'[I/(1+xs}j )

%e have already shown that the eigenvalues of the
matrix Mhave a negative real part when Eq. (3.26)
is satisfied. If this is so, then Eq. (B6}auto-
maticaily holds. Equation (BV) can be cast into
the form

deto""=,, i
1+—

i

x3&
4(1+x'}' (

/ x'(x'- 1}xj 1+ x+x(2x- y}) (B11)

"11+—)I -+x(»-y}
I

,(s,) 1 ( xs) &y

4(1+xs}'
&

x x'1+x'+~ 1-x2 (B9)

and Eq. (BV} is again satisfied.
We have proved that the matrix & ' calculated

by using the analysis of Sec. III is positive definite
whenever the eigenvalues of the relaxation matrix
M have a negative real part.

and Eq. (BB}leads to

deto = s s 11+ I I

x'+ -
I

x' ( xs) I s y'r
6(1+x'}' i y & i x&

(yx
I
-+x(2x-y)

I(x j (B10)

It is obvious that Eq. (B8) is satisfied if Eq.
(3.26) holds.

From Eqs. (B9}and (3.26} it is clear that (B l}
is satisfied for x&1. If x&1, we rewrite Eq.
(B9}as

APPENDIX C; ANALYSIS OF THE FLUCTUATIONS IN

TERMS OF A GAUSSIAN DECORRELATION

In this appendix we show how a certain factor-
ization ansatz" can be used to calculate one-time
expectation values such as (S') and (8'S ) —(S')(8 ),
and correlation functions of the type (8'(t}S (f'}&.
The results obtained by this technique are con-
sistent with those obtained by the self-consistent
system-size expansion method.

One can easily show from the master equation
(2.1) that the one-time expectation values satisfy
the fol.lowing hierarchy of equations:

d, , 4c—(S') = -(8') —+2 iy(Ss) + —(8'Ss) . (C1}

) =-&8-&+&&iy&8,&+-d . 4c
(C2}

—&8 &
=- —&8'&+ —&8-&- —&8'8-& -2 8 +-a iy , iy 4c 2V

(C3}

ZP—(S'S ) = -1V(8') —3(8'8 ) - —(8'S'S ) + —(8'S,SQ ——(8'8')+ (8'8 ) —+2iy(8 8$, (C4)

—&838 ) =-&&8'&-3&SSS &- &8'8 8 &+ —&SSSSS )+ &8 8 &- &8'8 )+&'y&SSSs&~ (Cs}

—(8'S ) =-2(S'8 )+v2iy(8'Ss& —+2iy(SsS ) + —(S'SsS ), (C6)

—(S'S') = -2(S'S') —2 +iy(8'8, ) —P2iy(S'& + —(8'S') + —(8'8'Sg, (CV}

—(S S ) =-2(8 S &+2+iy(SsS &++iy(8 )+—(S S )+—(S,S 8 ),d . . 4c „ Bc
(Cs}

—(SsSs) =-2(N- 1}(Ss)-4 SsSs ———P2iy(S'Sg+ v 2iy(SsS ) ——(8')

&8'SsS
&
- —&8'8 ) ~

iy 8c, 4c
(C9)
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It should be noted that we have put the operators
in the normally ordered form. The above set of
equations (12 in number after including the com-
plex-conjugate expectation values of non-Hermitian
operators) can be closed after decoupling the mean
values involving the product of three operators.
For example, if we use the Gaussian assumption,
then cumulants of the type"

(ABC&, =0 (C10)

—2&A&&B&&C& . (C11)

Upon adopting the decorrelation (C11}, the set of
Eqs. (C1)-(C9) is closed. We have solved the
resulting set of equations numerically. We find
that the solutions for (S') and (S') are only slightly
different from the ones given by (2.7). This can
easily be understood from our system-size ex-
pansion discussed in Sec. III, where we have
shown that the corrections to (2.7) are of order
1/¹ Our numerical solutions also yield fluctua-
tions such as (S'S ) —(S')(8 ). We find again that
the numerical solutions obtained from (Cll) are
in agreement with those given by (3.23). We also
solved analytically the set of Eqs. {C1)-(C9)under
the factorization ansatz (C11) and found the same
diffusion matrix as given by (3.23).

To obtain the correlation functions let us. con-
sider the fluctuations around the mean values,
i.e., for any two operators let us consider the
correlation function

(6A (t)6B(0)) = (A (t)B(0)& —(A (t})(B(0)&

= (A (t)B (0)& —P.(0)&(B(0)& .
In steady state it is easy to prove that

—&6A(t)6&(0)& = —(A(t)B(0)) .d

(C12)

(C13)

Hence, from (Cl)-(C3} and from the regression
theorem, 3' it follows that

should be zero. From the definition of the cumu-
lants, we immediately find that

(ABC) = (AB)(C) + (BC)(A) + (AC)(B)

q, =(6s'(t)6s (0)),

g2=(68 (t)6S (0)&,

Xq =(6S (t)68 (0)&,

and where 5($'(t)S,(t)}stands for the operator

5(S'(t)83{t)}=8'(t) 8,(t) —(8'(t)83(t))

=8 (t)83(t) —(S (0)SS(0)) ~

(C15)

(C16)

Equations (C14}can be linearized by using the
Gaussian decoupling scheme

(5(S'(t)$3(t)}6S (0))

= (6S'(t)6S (0)&(8~(0)&+(8'(0}&&68~(t)58 (0)),

(6($,(t)$ (t))6$ (0))

=(68,{t)68 (0))(S (0))+(58 (t)68 (0))(S3(0)&,

(5(S'(t)S (t))6S (0))

=(6S'(t)6S (0))($ (0))+(S'(0))(6S (t)68 (0)&.

(C17)

On using (C17), Eqs. (C14) reduce to

~ =My
dT

where. (
~ ~

Z—() -») ——(v+») -2 I

{C18)

(C19)

where the time variable and the parameters y,
x, and c are defined as before. We thus see that
the Gaussian decoupling scheme leads to the same
results as the ones obtained from the self-con-
sistent analysis based on the system-size expan-
sion. One, of course, has to study the validity
of the decoupling scheme and the justification for
such a decoupling scheme is provided by the
system-size expansio~ of Sec. III.

-r~
d
dt X =

-igl +iQ

—2i Ql

+ 2'4QI

2„1

where X, is a column matrix:

58'tS, t 58 0

+ (6($,(t)S (t)}6S (0))

-) is') )~ ) )) ~ )o)) &

'

(C14)

APPENDIX D: RESONANCE FLUORESCENCE FROM A
COLLECTION OF ATOMS

The resonance fluorescence from a collection
of atoms undergoing correlated motion has been
described in the past'0 by the master equation

8
&{8'8 p 28 )o-s'+ ps'8 -)

Bt

-i0[8'+8,pj,
where 2r is the Einstein A. coefficient and 0 is the
Habi frequency of the dr'iving laser field. Except
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(S') = -y&S') —2iQ(S3) + 2y g &s';s~&),

&S~) =-2y&83+ —'1V) -iQ(S') +iQ(S )

-2y g &s'&s&) .

(D2)

If one uses the factorization ansatz which ignores
the two-particle correlation effects, one has

&'s~) =(»N')&S &&S &.

Hence, Eqs. (D2) and (D3) reduce to

(D4)

—&S') =-&S'& —&iy&S'&+2 1 ——l&S')&S'),
~7 N). 1

for the absence of the single-atom relaxation
term, Eq. (Dl) is identical to the master equation
(2.1) which has been discussed in the main text.

There is, of course, a major difference be-
tween the atomic evolution described by Eq. (D1)
and the one described by'Eq. (2.1). In the former
case, if a system is initially prepared in an
eigenstate of the cooperation-number operator
(formally, the total angular momentum S2) it
will evolve in a fixed manifold of constant cooper-
ation number. Thus the evolution described by
Eq. (D1) is more "rigid" than the one described
by the master equation (2.1), where the total
cooperation number is not conserved owing to the
incoherent single-atom relaxation term.

In some sense the expectation-value equations
that follow from Eq. (Dl) lead to a formally
identical bistable behavior as discussed in the
main text. Namely, the equations of motion for
the expectation values (S') and (Ss) from (Dl)
take the form

—(S ) =-2 S + — ——(S')+ —(S )
iy , iy

2 v2

-2 1-— $' $" (D5)

where y and v' are defined as before.
As observed in Ref. 12, Eqs. (D15) have the

same structure as the mean-field equations for
bistability if one makes the identification c = ~N.
Thus the results discussed in the text remain valid
for the present model also. In particular, the
onset of bistability from a collective system will
take place provided c & 4'(or N & 8). In an earlier
paper' we analyzed exactly the resonance fluores-
cence from a collective system of two and three
atoms and found no bistability, in apparent agree-
ment with threshoM condition N& 8.

It is questionable to us whether the bistable
behavior exhibited by Eqs. (D5) is intrinsic to the
master equation (Dl) and not a consequence,
instead, of the factorization ansatz (D4). We are
studying at present the exact evolution of the
atomic observables according to the master
equation (Dl) for N&8. We will discuss this
question in greater depth in a subsequent publica-
tion.

Note added in Proof. After submission of the
manuscript we have ]earned that Bonifacio and
Lugiato have derived a quantum Fokker-Planck
equation for the atomic quasiprobability distribu-
tion. Their linearized Fokker- Planck equation
leads to the same atomic correlation function dis-
cussed in the present paper. " One of us (L.M.N. )
is grateful to Professor I ugiato for an illuminating
correspondence.
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