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The extent by which the moticsi of a small particle in a fluid deviates
from ideal Brewnian motion has been the center of considerable interest in the
past few years. Accérding to the theory of Brownian motion in its simplest
fonnl, the velocity autocorrelation function of a small object moving under
the action of molecular bombardment in a fluid at rest decays exponentially

'with time, The decay constant is a function of the particle's.mass and radius,

"and of fluid viscosity. This description, which is typical of a Markoffian |

system with short memory, was believed to be appropriate for Brownian motion

Z.N,Thus it was both

even for times longer than the velocity relaxation time
surpfising and exciting when Alder and Wainwright3 reportéd a much longer-lived
velocity correlation functibn from molecular dynamics computer calculations. |
The 1ong-ﬁime persistence of tbe{Velocity autocorrelation function, approximately
a t-3/2 decay law, is indicatﬁve of previously unsuspected memory effects at

the molecular level, Subséquent theoretical studies revealed that this long-
time behavior was consistent with the hydrodynamic description of the particler
motion. In the hydrodynamic regime, the presistent memory of the velocity

autocorrelation function has been traced to the existence ofkloCal fluid vor-

tices surrounding the moving object. In fact; even at the molecular 1evéi,

. vortex-like patterns of neighboring molecules were observed around test par-

*

ticles® in computer simulations. This behavior appears to be unrelated to the
detailed form of the intermolecular:forces, as mdre‘recent comﬁﬁter calculations
by lLevesque and Ashurst demonstrated with a Lennard-Jones infefactibﬁ”potentialﬁ,
The first clear experimental verification of the 10ng-tihe‘tail of the
velocity autocorrelation functidﬁ was given by Kim and Matta7. These |

investigators used a shock wave apparatus to accelerate small latex spheres
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. in an atmosphere of argon or air and observed the decaying velocity in a region

of the shock tube where the superposition of the forward and reflected shock
waves caused the gas to come to rest locally. The experiment provided conclu-
sive evidence that the velocity‘autOCOrrelation/function did not decay expo-
nentially for all time. The details of the long time decay, however, were
shown to be rat@er'sensitive to the particle's history prior to the beginning
of the observation. Thus, the ¢ata indicated a long time tail with a decay

1/2 3/2

law which was somewhat intermedinte between the t and t~ power laws,

Attempts to exhibit the t-S/Z power law décay by light scattering techniques
have yieldéd less convincing evidences. In these experiments, accuracy is limited
by the dual requirements that many particles be illuminated and that mutual inter-
actions between scatterers be minimized, By varying the concentration of scatterers,

it is possible to satisfy the first requirement. However, it is very difficult to

obtain a reliable estimate of the effect of particle interactionsgl

| Over the past year, we have investigated a third approach for measuring
the non-Markoffian compbnent in the relaxation mechanism of a Brownian par-
ticle which combines desirable features of both the shock wave experiment
énd conventional light scatteringAeXperimeﬁts. We suggest using the radia-
tion pressure generatéd by a C.W. léser to guide an individual sphericéi par-
ticle to terminal velocity; at an appropriate time, the beam intensity is
suddenly lowered to a value at which the radiation pfessure is negligible,

and the ensuing velocity relaxation is measured directly. Recent experiments

'in_Optical 1evitati0n;0 have shown that spherical particles can easily be

trapped and held stably'in a C.W. laser beam operating in the.TEMoo mode

having a Gaussian intensity profile. |
In.this'report we first review the theoretical background and then

describe the main features of the proposed oxpcrimcnté which are desipgned

to provide information on the velocity relaxation of a small particle,
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constant which is given by the damping rate g:

=]

Brownian motion is the apparently random motion of a small particle =& ,

[

aeraad ina ftuids Ihe ovigiwl investimitions of this phopenenon were

made on various objccts of colloidal size, The‘theory, however, has been
successfully applied to many other situations, frem the descriptionibf the
thermal noise of galvanometerm to the motion of ions and polymer molecules
in solution, even to the influence of rotational d11£u510n on NMR line widths,
In its general form, the theory of Brownian motion need not rcfer to the
descrmptlon of a real particle at all, but instead, to the behav1or of some
Eollect1ve property‘of a macroscopic system, {e.g., the 1nstantancou$ tQtal
electric dlpole moment of a macroscopic sample of fluid. If i'represents a
typical macroscopic coordinate, its random motion can be described by the |
Langevin equation |

g_g - g ¢§ fBE), ' [

where -gdX/dt represents the macroscopic damping force and F(t) is the total

: >
external force acting on the appropriate degree of freedom. Usually F(t) is

~ composed of various deterministic contributions and of a random part which

simulates the uncontrollable collision effects. If the random component

of the force F(t) has a very short memory (6r if it is 8- correlated), the

_velocity correlation function will decay exponentially to zero with a rate

{vi) v >~e Pt o (2)
For a spherlcal partlclc in a homogeneous fluid, for example, one £1nds '
_ 6mR
g = _%gL.,, _ g (3)
where R is the radius of the particle, m is its mass, and nis the fluid

shear viscosity.
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A more TCdllSth’debcrlptlon of the random motmon of a partlcle ina
fluid is obtained by the addition of the so-called Bassetvnou351nesq non-

local correction which takes into account drag memory effects, The modi-

fied langevin equation takes the form , b

d -+
m a——-— -6upRV - %qrpRS %., - GRZH\?;[ [a— 7:5“;} + F(t) (4)

where p is the fluid density, The first term on the right hand side is the
steady state Stdkes drag. The second term is the inéttial correction asso-
ciatediwith-thé fact that thevspheré must displace a volume of fluid equal
to its own volume before it can proceed forward. The third term is the
Basset-Boussinesq term which arises from the analysis of the linearized
NavierLStokes equation; it introduces memory effects as a result of stream-
“lines induced in the fluid by the particle motion. The last term coﬁtains~ :
possible additional deterministic forces and the usual réhdom force describihg |
the collisions of the Brownian particle with'the“molecules of the fluid. |
If a particle is injected in the fluid with.a’noneZerovinitial‘velocit ,
the vélo@ity relaxation to equilibrium is described on the average by an
v'equation with the same formal structure as the modifiedﬁlangevinkequation (4)
| without the random force (since the-average random forcekis,zero). ’The linearity
of this equation also insures that the velocity'éutocorréldtion’function will
‘relax to its equilibrium Valge accordihg ﬁo the same equatibn as that satis-
fied by the average véiotityf~ The kéy point. in this discussidn,is that the
préseﬁéé of the nori-local ferm.causes a‘significént departure forflongktﬂnes
from the etponentlal decay Whlch is expected for both the average veloc1ty
1 autocorrelmtlon Iunctlcn accomdlng to the simple Langev1n desc11pt10n. Thus,,'
we can obtamn_the long time beh1v1or of the autoc011elatlon function by meqsurlng
the 1on5 t;m& bnhaxlmr of thc average \CluuLL}  Prom By, (4) we see k

that if EE’* 0 for all s < t, the Basset term causes a delay in the damping -
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process so that the particle drift velocity approaches zevo over a longer : ' e

Brownian motion,

tose seale thast the usual chiurasteristic damping time ny {0+HR) ol ordinary : i

Ry /

: | |
This is not very surprising from a hydrodynamic point of view (the 1

streamlines of the perturbed fluid curl around the moving sphere and "push" =

: ; it from behind in the direction of the motion). What is surprising is that

R N A ok

Eq. (4), in spite of its complicated structure, can be solved exactly if the

‘sphere's initial vglocity is constant, v(t < 0) = Vo? and if the mean value | Ly
'bf the external force is also-constant, {F(t)) = F. First we consider the ,
; . case F = 0, Because Eq. (4) is linear in the velocity v, the avefage drift LH

» 3 z ‘ , veloc1ty of the Brownlan part1v1e satisfies the same equatlon as (4) without ‘ :;;
the random driving force. In the following development we will have no further

Rt need to consider the random velocity v so that without danger of confualon, the R

symbol v(t) from now on will denote the average drift velocity. Its equatlon"

of motion is obtained by taking the average value of each term in Eq. (4): v | j

&

o .
dv - ,
I + 3v-+y'£~ ds &

i

Vo ‘
s-° . ®
where

_ +6mnR ) » , - b
" W - S ® S

>

’ . L ; ‘ , , ‘
v : m+mf ;

and , ; o
2 .3 : ’ L
mf '—L, 3 Rop G ‘ ' (8)

On the curface it might appear that the drlft motion of the Brown1an particle

is controlled 1ndependently by its Stokes damplng rate § and by the strength
< Y of the memory term. In reallty, the memory'effect in the context of thls :
model imposes a kind of’huniversalﬁ deviation from the usual Brownian motion

iy
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and a temperature of 20 C relaxes Lo equ111br1um in a time of the order of 1

‘6

N 3

if tho time scale of the evolution is measured in units of g‘ Yle can see,

this clearly if we introduce the dlmen51onless time £ <gt in Eq. (5). The :
evolution equation becomes " , - , > j
TV «"[ de! ds' : e;" 0. o ®) N

\l

Hence the extent to whmch the Basset.uerm affects the part1c1p velocrty is

¥

controlled unlquely by the parameter I R , : | :

iy ’ *
A\

X3
B

Mg
m+mf

3 Pg , SN .
7;\/§———-b,s+»pf . a9

where'p

-is the mass den51ty of the sphere. Sdrprisingly enough the scaled

equatlon is no longer governed dlrectly by the fluid shear V1sc051ty n so that 4
dlfferent fluid media w1th the same mass den51ty Pg will have the same effect | 3

1
on the partlcle Veloc1ty Thls is, of course, true only if the observed time

dependence of the drift veloc1ty is analyzed on a tlme scale such.that the

unit of time corresponds to one Stokes decay time.

Equatlonv (9) and (10) also indicate that in order to enhance the dev1a-yq 1
tion from ordinary Brownian motion, one should use a fluid medium with a a , . 1
relétiyely high mass density.' This, in fact, is not entirelyofeasible because © :
high fluld den51ty also implies large shear V1sc051ty and short Stokes relaxa- . |
tion tlmes. .Thus time resolution problems may become serious if one should
~consider a flUId like water where the Stokes relaxation time Ior 10 ym radlus

partlcle is only of the order of ”O usec.

B A A

Byﬂcontrast a 10 um radius: partlcle in alr at a plessure of 1 atmosphere

msoc,, which is cax 11v meas urod Q;Fa, by 1nsez (bp»i;i snogixoxaov\ techni-

However, as notcd abOVu,;thG relative 1mpomtane of mcmory effects i
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decreases when the fluid density is small. Thus, in the case of 10 yn g,lab:,

S ¥
st o

beads in air 'u‘t standard conditions, one finds vE 4 x 1077, “
‘ We now consider the solution of Eq. (Y) in order to put our comments on
| , a more quantitative basis. 'l"he exact solution of Eq. (9) can be derived by
‘ a i'atlxer straigli*’tfor\;}ard appiicat:i.on of laplace transform techniques. The

velocity decay is rather complicatéd:

L a2 g (ATD2 8] erfe [ehEDV ]

; Vo 2'/;1-2_'1
j & ey ‘\v\ = ) : (11)
: | Z. : o ~
\\ - E’f/-'zu*:“—-l" exp [(wviZ-1)2 €] erfc [(u+/AZ-1)VE )
“ 27W*1 | - |
| o
‘where / ! e
=Y /T ‘
{ 1 *T2 B8 ) (12)

’We can obtain the 1ohg~time behavioi' of the Velocity by performing an asymp-

totic analysm of hq (11) in the limit £ » « (since £ = Bt) with the result

. SR v(é:) eV, 3

We are thus able to demonstxatc mdthematlcally how collision memory effects

which should be compared to the exponential decay of simple Brownian motion.

Up to this point, we have considered decay in the absence of external

i +

- forces. HoWever if the exterlml forces F in Eq.(4) are constant we can

easily obtain the velocity decay from Eq. (11) by rescalmg the velocity.

In view of the size of the memory term palameter v/ V8, we have also
: developcd an accurate perturbative solutlon to flrst order in y//E R Wthh

'although not 11m1tcd to constant F, can be applled to the case F 0. After

_ta.kmg a Laplace transform of Eq (5) we :Clnd

i - lead to an inverse power law decay in the velocity relaxation over long times,

. In fact, we simply subtract the quantlty F = F/ [(m + mf)s ] from v(s;) and Vo
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V() LA y'/E _ o
e VO s.yl.o.,y'/'/g' , c14)
where R

Vo A (15)

V(s) = Lv(e) (16) o
To first order in T': qut(ld) takes the fonn' : é i
i

é (17) cazm=be easmly inverted W1th the result

, vE ' S i .
v(e) = -& . 2v _-& 2 C 2y 12 vopy ! - ;
AR & [Teorw B mesna’ a

s ! : 0

} % "The second term dn'the right hand side of Eq. (18) is the so-called Dawson

functlonll; the third is the better known confluent hypergeometr1c function.

It is clear that for short times (¢ < 1) the dommnant contribution is the

exponential term that describes the usual relaxation of a Brownian‘particle

e B

(this is especially true because of the smallness of the term v/vB ). Fer

long times instead, a céreful asymptotic expaﬁsidn of the Dawson function |

and of the confluent hypergeometric function leads to the following limitinéf@hlm
i behavior of v(&) | | |

-1/2 -1

S v L1y e

: vioo 77 V& &

Clearly, the asymptotlc behavior of the drlft vclocmty f01 a paltlcle subJect

L. to a zero cxternal force (for example, in a grav1ty -free env1ronment; is dras-
t1ca11y different from an exponentlal There remalns to see at what stage of
the evolutlon a clcar dopatu1e from the memory-frcc behavior becomes observablc
This is shown in Flg 1 for several values of the 1atlo y//_ , s - L
The cvpe11mcntd1 tcsts hthh we have prOpO%cd to qtudy memorv effects in
§ ©om earthbound laboratory, envthQu.Lhc suspension of a small glass bead in a
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powerful (a fow watts) focused C,W. laser beam,

9

The particle is initially at

rest in air at various pressurcs and zan be trapped stably in the restoring

radiation pressure field provided by the Gaussian laser beam,

intensity is suddenly changed by a small amount, the particle will seck a

If the beam

new equilibrium position undergoing a modification of the usual damped har-

monic motion. The modification will come about as a result of the memory

term in the equqtidnrof motion,

The langevin equation for the drift velocity of a particle subjéct to.

. ¥ p 4 .
viscous damping and a harmonit restoring force has the form

t
%Y- +v o+ ‘"i‘-[ dE_’, ' %'\é,l w,_e__%._,_g_ii. = 'kz «> ‘ (20) .
i o o

where £ is the usual dimensionless time, k is the scaled restoring force

constant and z is the instantaneous distance c¢f the particle from equili-

brium. Unlike the case of a free particle where an exact solution of the

Langevin equatlon can be obtained w1thout much effort in thlb case, the

Laplace inversion requires the solutlon of a cubic equatlon.

&

It is clearly

preferable to forgo the search for an analytlc solutlon, and to take advan-

tage 1nstead of the smallnoss of y/VB to obtaln a;pertuxbatlve solutlon

whlch 1s correct up to terms of order (v /%h ) . We cons;dervagaln the

Laplace transform of Eq, (20) and eliminate the variable z(g) w1th the help

of the relatlons

dz _
T~V

. -~ ats 8
s 2(s) - Z4

- whereﬁf(s),s L‘(z(g)) andkzo,= z (&

we find

= V(s)

(1)

After some minor algebraic steps

.
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ﬁsv‘«kzq e [k zorwvo] s’,*kvo"

(s + 5+ k)?

"‘.}\
Ny

[&

where y' 2 X5L . lie inversion of Eq. (22) is rather laborious, but

! straightforward. The result is

- v(g) = Ae + pe &

;;,i (23)
: o B 2y 1/2

~ (
Before we pro»eed to ldcntlfy h _numerous parameters of this solution, we

R A

must point out at once that thc last two terms on the right hand side of
Eq. (2Z3) represent the memory correction. Furthermore, the evolution of i

v(E) proceeds according to two distinct time scalez set by the rates P and

Q. We now discuss the various symbols appearing in Eq. (23). The parameters

P and Q are solutions of the quadrétic equation s? + s + k = 0 (see Eq. (22)),

*

i.e.,

| P p=%f1+nﬂ4f);  L (24)
. q-fa-m) @9

,3' ' They can be real or complex as with the ordlnary ploblem of a damped harmonic
. oscillator. The constants A and B which govern the ordlnary (non -memory

l: TR ‘k related)‘part of the solution are given by

- 5 S N . o | A= — P e : (26)
é ? ﬁ'f o ‘f S - }: R R

s
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Note that in the typical experimental situation which is being considered we

axpect to have v, ” 0

kz. +v =~ 2kv

C= - 9.0 9 " (28)
(p . Q)3
kv, ~Pkz +Vv)
. D Q)‘g 0 (29)

v, ~Qk z_ +v.)
Tor 0)

*

"We can easily verify that if k » 0, Eq. k23) ptéperly reduces to Eq. (18)

v(force free case), The long time limit of Eq. (23) however provides us wiéh
a surprising result which helps in dispelling some of the early attempts in
the literature to associate excessive fundamental significance to the 5'1/2

~behavior of the long time force free case. In fact, the long time limit of

(16) is seen to be'of the form

" 11 E , D ~3/2 |
‘ V) ~ 7 [c(.d.ﬁ) (& +§)} -3/ -

The power law is now of the type 5'3/2 indicating that the asymptotic behavior

is apparently a sensitive function of the external field of force.

wc should note here that while the soiution.of Bq. (23) converges to the '

one obtained in the force free case for k » 0, it is no longer possible to *
try to compare Eq. (31) w1th its 1ong tlme counterpart in the k > 0 11m1t.
fIhl@ is because as k -+ 0, the parameter Q apploachebvzero thus violating the
aSymptotic conditions for Pe¢ and Q¢ which are~nece$séry*in,order‘to derive
Eq. (31)

It is 1nterest1ng to observe thdt in the ovcrdamped case (k < 1/4), three

phases of the relaXatLon should be investigated carcfully

e M
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a) Pgand Qe <l

In this case, the motion is essentially indistingn.shiable
from that of an overdamped oscillator

b) Pz » 1”but Qg <1

Here, one should be able to detect evidence of memory
effects

¢) Pgo>> 1,Q6> 1
This corresponds to the asymptotic decay region which is
governed by the power law (Eq. (531)). This situation appear's
difficult to study experimentally bccause of the long time
scale involved.

In addition to the exact and perturbative solutions to special cases of

the modified Langevin equation, we also constructed a numerical solution which, -

is applicable to arbitrary forces F(t). This solution was based on the Adams-
Bashforth-Mbultonvpredictér/cafre§tcr technique for solving differential equa-
tions. In extensive tests between thefnumericai,and analytical solutions,
agreement to four significant digits was demonstrated throughout the region
of interest. The numerical solution can be used to predict the motion of a
levitated glass bead when the laser undergoes small sinusoidal fluctuations

in power. By varying’the frequency of fhese fluctuations, the resonance of

“the system can be probed to ylexd critical information on. the size of the

memory term. Thls point, however, needs additional study, and will be
analyzed in subsequenL progrees TEports.

We discuss now a few p0551b1e ways to vcrlfy the predlct1ons detailed

above. We are espeqlally'lnterested in mea5ur1ng the velocit, relaxation

~of a small glass sphere (diameter of the order of 10-40 ym) in a gas.' In

an earthbound laboratory, a possible Way'to zccomplish this goal is to
levitate the partiC1e using the radiationwﬁ}éééute'prodmced by a focused

Argon-Ton laser having a Gaussian intensity profilc.. As shown schematically

e R g ot
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in Fig. 2, the laser '~mm is deflected upward‘aﬁd focused on a,coiiéction
of particles resting on a wicroscope slide. A cyllndr1Cdl plczoclectrlc
crystal is used to break the Van dcr Waals attraction between the glass
beads and the slide., With some careful handling, a sphere can be trapped
in the laser beam and propelled upward above the focal plane of the lens
where the effects of gravity, radiation pressure and radiometric forces (if
present) balance each other out., The beam profile is’'such that the suspended
spheres are trapped‘stablykas a result of radial restbring forces if sufficient
precaution is exercised in shleldlng the system from external disturbances

(air drafts, malnly) " Cnce the particle is 1ev1tated the 1aser power 1s to

be suddenly increased or decreased to a new level by means of an electro- optlc
& . .

device and the ensuing motion will be measured,

A direct recording of the motion can be done with a high speed streak

~ camera of the rotating drun type. The réquired resolution of 0,1 uSec‘appeafs,

to be available Commercially. At a subsequent time, we will develop an optical
heterodyne detection scheme for measuring the‘particle velocity directly

throuéh the Doppler shift of the backscattered light. Real-time frequency

}measurements of the beat signal between a reference beam and the Doppler

sh1fted one will’ give direct 1nformat10n on the relaxation process of

.. interest. _ These measurements appear quite feasmble because of the high

1nten51ty of the backscattexed 1ad1at10n, but 1t is difficult to predict

how accurate the readings can be for the required. long tlmes. Of spec1al
interest 15 the analy51s of the scaling relﬂtlon developed in the theoxetlcal

kkSQCthH. For this purposc, we w111 modify the cell de51gn (Item 6, Tlg 2)

, sb{that the atmospherlc pressure can be varled-ln a controlled way. This is,

of course,'quite easy to do because the required‘operating'pressures will be

mbil within the reach ol a small rauguxng puwa,'ﬁ'faw terr to a few hussdreds

. omam 4’%@’
®F PQ@E ﬁ”ﬁfﬁ“ -
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of torr). Under low ; ressure conditions, the particle motion tbwagﬁfthe o , %
perturbed equilibriUm'Coniwonration shoul& be underdamped and easylﬁo follow §
with moderate time resolution., | # %

It appears interesting to fo;cém;‘sinuéoidai modulation of the lase;hw‘ %
intensity at various frequencies and to observe the particle response. As % h
the modulation frequency is varied acioss the particle résqnancé, additional %
information on the nOn-Markoffiaﬁ components of the velocity will be sought. %

Certain aspects of the velocity relaxation éannet‘be measuredkinuén é
earthbound laboratory owing;to thevpresehce of gravity. In particular, the f
£1/2 power law derivéd previousl& in this paper applies'oﬁiy to velocity é
relaxation in the abseﬁce ofyforces. It iélthis relaxation which we will %
measure in a gravity-free en:'u’rronment.”N'ovi,2 the laser can be used to propel %

a sphere to terminal velocity in the scattering cell. After the laser is k %
reduced to the level bf a pfébe signa1; the vélocity’rélaxdtion will be % ?
measured using thé samé heterodyne detection system. Other systems for § é

zerd~graVity experiments may also be developed. Since fhere'is‘no’gravita— %

" tional force to overcome, low power lasers may be used to propel the sphefes. %

i

. In addition, the spheres may be trapped by configuring two laser beams of | ?
gqual intensity‘antipérallél to each‘éther. - ? %
> 7 N M‘u
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