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The extent by which the motiCi!1i. of a small particle in a fluid deviates 

from ideal Brownian motion has been the center of considerable interest in the 

past few years. According to the theory of BrO\~ian motion in its simplest 

foni, the velocity autocorrelation function of a s~all o~ject moving under 

the action of molecular bombardment in a fluid at rest decays exponentially 

',with time. The de~ay constant is a function of the particle's .mass and radius, 

"and of fluid viscosity. This"description, which is typical of a Markoffian 

system with short memory.. was believed to be appropriate for Brownian motion 

even for times longer than the velocity relaxation time2• Thus it was both 

surp~ising and exciting when. Alder and Waimrright3 reported a much longer-lived 

velocity correlation function from molecular dynamics computer calculations. 

The long-time persistence of tte velocity autocorrelation function, approximately 

a t- 3/ 2 decay law, is indicatlve of previously unsuspected memory effects at 

the molecular level. Subsequent theoretical studies revt'!aled that this long­

time behavior was consisteI?-t with the hydrodynamic description of the particle· 

motion. In the hydrodynamic regime, the presistent memory of the velocity 

autocorrelation function has been traced to the existence of local fluid yor­

tices surrounding the moving object. In fact, even at the molecular level, 

vortex-like patterns of neighboring molecules were observed around test par­

ticles 5 in computer simulations. This behavior appears to b.e '!nrelated to the 

detailed form of the intermolecular forces, as more recent computer calculations 

by Levesque and Ashurst demonstrated \",ith a Lennard-Jones interactionpotentia16• 

The first clear experimental verification of the long-time tail of the 

velocity autocorrelation functi;u was given by Kim and Matta7• These 

investigators used a shock wave apparatus to accelerate small latex spheres 
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ill an atmosphere of argon or air and observed the decaying velocity in a region 
. 

of the shock tube where the superposition of the forward and reflected shock 

waves caused the gas to come to rest locally. 1beexperiment provided conclu­

sive evidence that the velocity.autocorrelation function did not decay expo­

nentially for all time. The details of the long time decay, however, were 

shown to be rather 'sensitive to the particle's history prior to the beginning 
• 

of the observation. Thus, the ~i:\ta indicated a long ti'lle tail with a decay 
/_. t 

law whic~ \~as some\..,hat intennediate between the t- l / 2 and t- 3/ 2 power laws. 

Attempts to exhibit the t- 3/ 2 power law decay by light scattering tl=lclmiques 

have yielded less convincing evidenceS. In these experiments, acc'Ura.~y is limited 

by the dual requirements that many particles be illuminated and that mutual inter­

actions between scatterers be lninimized. By varying the concentration of scatterers, 

it is pos.sible to satisfy tho first requirement. However, it is very difficult to 

obtain a reliable estimate of the effect of particle interactions9 • 

Over the past year, we have :investigated a third approach for measl)ring 

the non-Markoffian component in the l'elaxation mechanism of a Brownian par­

ticle which combines desirable features o~ both the shock Wave 'experiment 

and conventional light scattering e~-perimerits. We suggest using theradia­

tion pressure generated by a C.W. laser to guide all individual spherical par­

ticle to terminal velocity; at an appropriate time, the beam intensity is 

suddenly lowered to a value at which the radiation pressure is negligible, 

and the ensuing velocity relaxation is measured directly. Recent experiments 

. in optical levitationlO have ShOMl that spherical particles can easily be 

b'apped and held stably in a C.W. luser beam operating in the ,'1'131'.1 mode 
. 00 

having a Gaussian intensity profile. 

In this report '''e first revic\\' the theor.eticaJ. background and then 

describe the main .t~ntln'C'S of the pl'oposed 0::q)Crimcnts Khich arc dc-signed 

to provide info111lation on the velocity relaxation of a small particle . 
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Browninn motion is the apparontly i'urn.1t1m motion of {l SlIlall particle 
\\ , . 

made on val'ious obj ccts" of cOlloidal size. '1110 thear)', hO\\'cver. has been 

successfully applied to many other situations, from the description\bf the 

thermal noise o£ galvanometersl, to the mot;ion of ions and polymer molecules 

in solution, even to the influcnce of l'otntiollul diffusion on N(\1R Une \\'idths. 

In its general form, the theory of BrO\mian motion need not refor to the 

,description of a real particle at all, but instead" to the behavior of some 

collective property of a macroscopic system, (e.g., th~ instantaneous total 

electric dil'0le::moment of a macroscopic sample of fluid. If ~ :f;'epresents a 

typical macroscopic coordinate, its random motion can be described by the 

Langevin equation 

d2.:{ cLX 
nt~ = -13 at + it(t) , (1) 

where -!3dX/dt represents the macroscopic damping force and Bet) is the total 

external force acting on the appropriate degree of freedom. 
-+ 

USllally pet) is 

composed of variolls detenninistic contributions and of a random part which 

simulates the uncontrollable collision effects. If the random component. 

"of the force. F(t) has a very short memory (or if it is 15- correlated), the 

velocity correlation function will decay e~onential1y to zero ,dth a rate 

constant which is given by the damping rate (3: 

\ 

For a spherical particle in a homogeneolls fluid, for example, one finds 

6irnR 
m 

(3= 

where R is the radius of the particle J m is its mass, and n is the fluid 

shear viscosity. 

j;, t ~h ,< .. 'It,' 

(2) 

(3) 
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A more realistic, description of the random mQtion of; a pal'ticle in a 

fluid is optained by the addition of the so~called Basset .. J30ussmesq non"" 

local correction which takes into account drag me/Tlory effects. The modi .. 

fied l.angevin equation take~ the fonn , 

d-+ 2 3 
'V - 6 R-+ 'R m at - - lfP V - ~p ~ - 6R2/~iip r [~ (4) 

whel'e p is the fluid density. TIle first term on the right hand side is the 

steady state Stol\es d'rag. 111e second tenn j.$ the inertial correction asso" 

ciated \'i'iththe fact that the spnere must displace a vollU11e of fluid equal 

to its mmvolume before it ~an proceed forward. The third term is the 

B(lsset-.Boussinesq 'tern which arises £I'om the analysis of the linearized 

Navier~Stokes equation; it introduces memory effects as a result of stream­

lines induced in the fluid by the particle motion. The last term contains 

possible additional detenninistic. forces and the usual random force describing 

the collisions of the Brownian particle with the molecules of the fluid. 

If a pal'ticle is injected in the fluid with a non-zero initial velocity, 

the velocity relmtation to equilibrium is described on the average by an 

equation ,d th the same f0l1nal structure as the modified Langevin equation (4) 

,dthout the random force (since' the· average random force is zero). TIle linearity .. 
of this equation also insures that the velocity autocorrelation function will , 

relax to its equilibrium valve ~ccording to the same equation as that satis­

fied by the average velocity. The key point in this discussion is that the 

presence of the nott--Iocal te11n, causes a Significant departure for long times 

from the e).-ponential decay '''hich is e).-pected for both the average velocity 

autocorrelation ftUlction according to the simple L..1ngevin description. TI1t)S, 

\ve can obtrdn the long time bch(lvior of the autocorrelation ftlllction by measuring 

the long t.uilC llCh~w ior of thu tlVCl'agG velLl';; ity • Fnmr Eq. (.~) HE' St~C 

(hI 
thtlt. if d~- < 0 fOl' all s <: t, the Basset t:01'11\ causes a delay in the dmnping 
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Br'Jwnian motion. 

111is is not very surprising il'om a hydl'odynnmic point of viel\' (the 

stream1ines of the perturbed fluid cu:d .around the moving sphere and "push" 

it from behind in the direction of' the motion). What is surprising is that 

Eq. (4), in spite of its cClIIplicateclstructure, can be solved exactly if the 

-,sphere's initial velocity is constant, vet .:; 0) = vo ' and if the mean value 

. of the external force is also 'constant, (F(t» ::% F. First we consider the 

case F =0. Because Eq. (4) is lineal' in the velocity v, the average drift 

velocity of the BrOimian particle satisfies the same equation as (4) without 

the random driving force. In the follm'ling development wewlll have no further, 
I 

need to consider the random veloci tv v so that without danger of c()J)£usion, the 
~ • • "0 

symbol vet) from now on will denote the average drift velocity. Its equation 

of motion is obtained by taking the average value of each term in Eq. (4): 

\'I'here 

and 

i 

t 

~ + f3v +1'1 
o 

21T 3 m = - R p f 3' 

1 
ds r't-s'" 

dy 
-= 0 ds (5) 

(6) 

(7) 

(8) 

On the surface it might appear that the drift motion of the Brownian particle 

is controlled independently by its Stokes damping rate 13 and by the strength 

I' of the memory term. In reality, the memory effect in the context of this 
. 

model imposes a kind of "universal" deviation ft'om the usual Brownian motion 
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6 .' ~ 
.. if the time scale of th~ 'evolution is measured in units of ~-l. Vie can see. 

this clearly if we introduce the dimensionless time E; ~ ~ m Eq. (5). 111e 
II 

evolution equa,tlon becomes if 

dv .LJ ( dv tn- + v + Ii d~' (it. IE; 
1 (9) 

E;' ::: 0 
,0 1\ 

)! 

Hence the extent' to which the Ba!:1set.i:enn affects the 'particl~\relocity is 

controlled uniquely by the parameter 
I 

= * J <r2P-:_f_+-P-f (10) 

. 
where rp is the mass densig of the sphere. Surprisingly enough, the scaled . . S f 

# . 
equation is no longer g~~fbrned directly by the fluid shear viscosity. n so that 

different fluid media with the same mass density Pf \rill have the same effect 
I 

on the particle velocity. This is, of course, true only if the observed time 

dependence of th~ drift velocity is analyzed 'on ~,. time scale such that the . . 

unit of time corresponds to one Stokes decay time. 
, . 

Equations (9) and (10) also indicate 'that in order to enhance the devia­

tion from ordinary Brownian motion, one should use a fluid mediunl with a 

relatjYelyhigh mass density. This, in fact, is not entirely feasible 'because 

high fluid density also implies large shear viscosity and short Stokes relaxa- . 
i 

. tion times. "':l1ms, time resolution problems may become serious if One should 

consider a fluid-like water where the Stokes relaxation time for 10 ~m radiu$ 

particle is only of the order of 20 ).lsec. 

By. contrast, ~ 10 ~m radius particle in air at a pressure of 1 atmosphere. 

and a temperature of 20()C rel:iXes to equilibrium in a time of the order of 1 

ques. However, as noted above, tIl(> relt'ltivo importanct' of melllory effects 

oRIGINAL PAGE is 
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dcct"e;usC's wlwn the; fluid l.iC'uc;:lty i.s smull. tl1ms~ in the case of 10 ,m glass 
, " 

bc~tds in nil' nt ~tuntlnl'd COIKii.tiQIlS, one finds fa": ':1::' 4 x lO~~. 

Wf;) now consider the soluti<')fi of Eq. (9) in order to put our comments on 

a more qu~~\~itative. basis. 111e exact solution of Eq. (9) can be dcrivedby 

a rather straightfol'\~al'd application of lapl~ce trans£onn techniques. TIle 
\,j • 

velocity decay is rather complicated: 

erfc [(1l-/1l2.-1) I~ ] 

II lulLl [( ~l)Z ] ~l'fc [(\I+1!,2~1)''F'] - 2~:1' exp }.I+Y),J--,L ;... I" I" v,~ 

(11) 

(12) 

We can obtain the long-time ~eha.vior of the velocity by perfol,ning an asymp­

totic analysis of Eq. (11) in the limit ~ -+ 0) (since F; = I3t) with the result 

v(~) ~ ~-1/2 (13) 

We are thus able to demonstrate Jnathematica1ly ho\'I collision memory effects 

lead to an inverse power law decay in the velocity relaxation over long times, 

which should be compared to the exponential decay of s:iJnple Brmmian motion. 

Up to this point, we have considered decay in the absence of external 

forces. However, if the eXternal forces F in Eq. (4) are constant, we can 

easily obtain the velocity decay from F4.(ll) by rescaling the velocity. 

In fact, we simply subtract tl1e quantityft=F/[(m +mf )f32J ,fromv(E;) andvo' 

In view of the size of the memory term parameter y/ re, we have also 

developed an accurate perturbative solution to frrst order in y/ Iif , 'which 

although not limited to constant F, can be applied to the case F= O. 

taking a Laplace transform of Eci.{S) we find 

After 
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f; 

where 

v(s) := 

V o 

1 +' y' / IS 
5+1+y' /.;go 

y' I:%...:L- lir 
r7f 

v(s) !: L(v(e;)) 

To first order in y', Eq •. (14) takes the fonn 

'Y(s) ,;. 1: + Y'-'u + G(rtZ) 
"vo - - 's~1 IS (s+1) 

.. 8 

(14~ 

(15) 

(16) 

(17) 

l ., 

i\ EQ. (lc7) ('~,c~~e easily invert~d with the result 
" 

I 

V(E;) = e-~ + ~ e-l;! If e>.2 dA _ .~.y. ~1/2 F (2,3/2;-~) I, 
~ ~ 0 'r7f 11 

(18) 

The second term on the right MIld side of Eq. (18) is the so-called Ibwson 

functionl1 ; the third is the better known confluent hypergeometric fWlction. 
I.: 

It is clear that for short times (t; " 1) the dominant contribution is the ...... - . ,. '-
exponential ter:m that describes the usual relaxation of a Brownian particle 

(this is especially true because of the smallness of the term r/li ). Fo.l' 

long times instead, a careful asymptotic expansion of the Dawson function . . 
and of the confluent hypergeometric function leads to the following limiting~ 

behavior of v(~) 

( ) 1 -1/2 vt;; + "?nY-I; vror 'Z rp (19) 

Clearly, the asymptotic behavior of the drift've10city for a particle subject 

to a zero external fox-ce (for example, in a gravity-free environment) is dras­

tically different from an exponential. There remains to se,e at what stage of 
, \ 

<::::'..~:......~: ... ~>"~~ 

the evolution a clear depature from th~ memoly-free behavior becomes observable. 

This is shown in Fig. 1 for several values of the ratio r / ~ . 

The e>q)erimcnta1 tests \\'hich we have proposed to stml), mcmoty effects 'in 

un (:urthbounu la.hmatol'Y t env is ion the suspension of 11 small glass bend in a 
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powerful (n few wat~s) focused C.W. laser beam. TI1C particle i!J initially at 

rest in air at various pressures and r.!nn bo trapped st~blY in the restoring' 

l'ndiation pressure field provided by the Gaussian lnser bcmn. If the beam 

intensity is suddenly changed by a small amount, the particle will seck a 

new equilibrium position undergoing a modification of the usual damped har­

monic motion. TIle modification will come about as a result of the memory 

tem in the equ~tiono£ motion. 

111cLangevin equation for the drift velocity of a particle subject to, 
I 

viscous damping and a hal1nonic restoring force has the foml 

. t 

dV t v + •. ::L_ J d~' 
at 'lS' 

i' 0 

~kz (20) , 

where ~ is the usual. dimensionless time,k is the scaled restoring force 

constant and z is the instantaneous distance of the particle £l'Qm equili­

brium. Unlike the case of a free particle where an exact solution of the 

Langevin equation can be obtained without much effort in this case, the 

Laplace inversion requires the solution of a t;ubic eq~~atioJl. It is clearly 
I,' • 

preferable to forgo the search for an analytic solutibn, and ·to' take advan­

tage instead of the smallness of y/ ~ to obtain a pertul;'bative solution 

which is correct up to tennso£ order (y /(~ )2. We consider again the 

Laplace transform of Eq. (20) and eliminate the variable z(~) with the help 

of the relations 

*= v 

51"(5) Zo ::'l:Y(s) 
"-' where z(s) :: L (z(f;)) ruld z = z(~ ~ 0), 

o 

",e find 

(21) 

After some minor algebraic steps 

:-; -- ---- . ' 
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Vi (1 + i,l/lS) Vo .. k 'le/s 
v[s) t:;! ~~.-...4J1"1!'11\>,~~~~~. 

" + 1 -+- " ,.' .. I, t " "t J .. ~, r4., ,'\" 

[k zo,+ vOl s ... k Vo 
, (52 +'$' :;: k) 2 

t\ 

. .\ 
\. 

where y! :: :c!. 'me inve:t'slon o£Eq. (22) is rather l,flboriOus_ but 
,a " }J J{ 

stl'::lightforl.;arcl. The result is 

v(€) = A. e-P~ + Be "Q; 

_ 2y ~ {IP e-p~J v'P'i eA? di. _ 
fJf 0 

+ 2y ;1/2 [D F (2,2/2; -P;) + E F (2 3/2' Q~)] ~' ~. 1 1 • 1 '1 ,. ,-
,) . 1,\ .... ~ 

10 

. (22) 

(23) 

\.\ 'r 

Before we proceed ~tJ ident..ify\'t.h~ numerous parameters of this solution, we 

must point out at once that the last two tcrmson the right hand side of 

Eq. (23) represent the memory correction. Furthermore, the evolution Of 

, v(~ proceeds according to b/o distinct time seal en set by the 'rat-es P and 

Q. We now discuss the various symbols appearing in Eq. (23). '!he parameters 

P and Q are solutions i:>f the quadratic equation s2 + s + k = 0 (see Eq. (22)) I 

i.e. , 
. , 

1 P = '2 (1 ... (I - 4k ) (24) 

1/ 
Q = ''2' (1 11 4k ) 

/' 
(25) 

'!hey can be real or complex as wit.h the ordinary problem of a dampedhalmonic 

oscillator. The constants A and B which govern the ordinary (non-memory 

related) part of the solution are given by 

" • 

k'i +Pv A _0 ' 0 
- P-Q 

- k z ... Q v:. 
B- O. 0"'\ 

-, Q-P '\ 
\\ 
\~ 
\\ 

(26) 

(27) 

' " . 

_Z:;\ l 

• I 

1 
J 

1 , 

<~ .'- .,f .. ", ... _, ....... ",_ 

"-"~'--~J 

'" .;- ~~-,------,,,,,, ...... ,,,,,' -' 



'\ D= 

~ 

k ~ + v 2k v 
"0 0 ·0 

rei) .. Q) 3 

k Vo .. P(k zo+ Va) 
(p". Q)3 

k Vo » Q(k Zo + vol 
, (p ... Q)i' 

11 

(28) 

(29) 

(30) 

, We Call easily verify that if k ~ 0, Eq. (23) properly -reduces to Eq. (18) 

(force free case). '111e long time limit of Eq. (23) however provides us with 

a surprising result which helps in dispelling some of the early attempts in 

the literature to associate excessive fundamental significance to the (1/2 

behavior of the long time force free eaSe.. In fact, the long time limit of 

Eq. (1.6) is seen to be of the fonn , . 

~3/2 
f; (31) 

The power la,., is now of the type ;-3/2 indicating that the asymptotic behavior 

is apparently a sensitive function of the external field of force. 

We shOUld note here that while the sOlution of Eq. (23) converges to the 

one obtained in the force ftee case for k ~ 0, it is no longer possible to· 

try to compare Eq. (31) with its long time counterpart in the k -~ 0 limit • . 
This is because ask ~). 0, the parameter Q approache~, ~ero thus violating the 

asymptotic conditions for FE; and Q.; which are necessary in order to derive 

Eq. (31). 

It is interesting to observe that in the ovcrdamped case (k -< 1/4), three 

phases of the relaxation Should be investigated carC'f;u1ly: 

j 
I 
.J 
II 

j 
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In thi~ ease, tho llIotion is csscntLnUy indistingh,:$h~tblc 
from that of 0.1\ oyenlrunpcd oscillator 

b) p~ ~ 1 but Q; < 1 

c) 

Here, one should be able to detect evidence of memory 
effects 

p~» 1, Q~» 1 

11115 corresponds to the as}'Jllptotic decqy region \~hich is 
governed by the po, ... er 1m\' CEq. (31)). 111is situation appears 
difficult to study c>--pel'imen.tally because of the long time 
scale involved. 

12 

In addition to the exact Ilncl.pertul'bative solutions to special cases of 

the modified Langevin equation, ''Ie also constructed a numerical solution which, 

is applicable to arbitrary forces F(t). TIlis solution \'las based on the Adams~ 

}3ashfol'th-NoultoJl predictor/eorrector technique for solving dlfferential equa .. 

tions. In extensive tests betl'o'een the numerical and analytical solutions, 

agreement to four significant digits was demonstrated throughout th~ region 

of interest, The. numerical solution can be used to predict the motion of a 

levitated glass bead when the laser undergoes small sinusoidal fluctuations 

in power. 'By varying the frequency of these fluctuati.ons, the resonance of 

the system can be probed to yield critical in£onnation on the size of the 

memory tenn. This point, huwever, needs additional study, and will be 

analyzed in subsequent. progfeS5 reports. 
, 

We discuss now' a £ew ·ppssible \'lays to verify the predictions detailed 

above. We are especially interested in measuring the velocji/ relaxation 

of a small glass sphere (diameter of the order of 10-40 )lm) in a gas. In 

an earthbound laboratory, a possible way to r.:ccomplish this goal is to 

levitate the particle using the radiation pressure produced by a focused 

Argon-Ion laser having a Gaussian intensity pro£ilc,:, , As shown schematically 

" 
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in Fig. 2, the laser • "':lin is de£l~ctcd upward and focused on a collection 

of particles resting on a h. icroscope slide. A cylindrical pic:zoelectric 
'\ 

crystal is used to break the Van del' Waals attraction between the glass 

beads and the slide. With some careful handling, a sphere can be trapped 

in the laser beam and propelled upward above the focal plane of the lens 

where the effects of gravity, radiation pressure and radiometric forces (if 

present) balance each other out. 1he beam profile is 'such that the suspended 

spheres are trapped stably as a result of radial restoring forces if sufficient 
( 

precaution is exercised in s}lielding the system from external disturbances 

(air drafts, mainly). Once the particle is levitated, the laser power is to 
, ,> 

be suddenly increased or decreased to a new level by means of an ele~tro-optic 
r\ 

device and the ensuing motion will be measured. 

A direct recording of the motion can be done with a high speed streak 

camera of the rotating drum type. The required resolution of 0.1 llsec appears 

to be available commercially. At a subsequent time, we will develop an optical 
. 

heterodyne detection scheme for measuring the particle velocity directly 

through the, Doppler shift of the backscattered light. Real-time frequency 

measurements of the beat signal between a reference beam and the Doppler 

shifted one will g:'!ve direct information on the relaxation process of 

interest. ,These measurements appear quite feasible because Of the high 

intensity of the backscattered radiation, but it is difficult to predict 

, how accurate the readings can be for the required. long times. . Of special 

interest is the analysis of the scaling relation developed in the theoretical 

section. For this purpose, we will modify the cell design (Item 6, Fig. 2) 

so' that the atmospheric pressure can be varied in a controlled way. This is, 

of course, quite easy to do because ~he required operating pressures will be 
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of torr). Undor low J. "cssure conditions, the particle motion t~wa{.\j! the 
I . . 

pertut'bcd equilibrium coni,lp1lration should be underdampcd and easy ';~o £9110\\/' ., 

wi th moderate time resolution. 
\\" 

l.t appears interesting to force a sinusoidal modulation of the laser Ij 

intensity at various frequencies and to observe the pa'rticlE~' response. As 

the modulation frequency is varied across the particle resonance, addi.tional 

information on the non~~tlrkoffian components of the velocity will be sought. 

Certain aspects of th~ velocity relaxation cannot' be measured in an 
I 

earthbound laboratory owing to ,the presence of gravity. Inpal'ticular, the 

t -1/2 POWC1' law derived previously in this paper applies OIlly to velocity 

relaxation in the absence of forces. It is this relaxation \'w'hichwe ,..,ill 

measure in a gravity~free enivrorunent. NO\~i~ the laser can be used to propel 

a sphere to terminal Velocity in the scattering cell. After the laser is 

l'educed to the level of a probe signal, the velocity relaxation will be 

measured using the same heterodyne detection system. Other systems for 

z,ero-gravity experiments may also be developed. Since there. is no gravita­

tional force to overcome, lm'f power lasers may be used to propel the spheres. 

In addition, the spheres may be trapped by configuring tlvo laser beams of 

equal intensity~ntiparallel to each other. 
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