47 research outputs found

    Northern geometrid forest pests (Lepidoptera: Geometridae) hatch at lower temperatures than their southern conspecifics: Implications of climate change

    Get PDF
    Climate change may facilitate shifts in the ranges and the spread of insect pests, but a warming climate may also affect herbivorous insects adversely if it disrupts the locally adapted synchrony between the phenology of insects and that of their host plant. The ability of a pest species to colonize new areas depends on its ability to adjust the timing of phenological events in its life cycle, particularly at high latitudes where there is marked seasonality in temperature and day length. Here we incubated eggs of three species of geometrid moth, Epirrita autumnata, Operophtera brumata and Erannis defoliaria from different geographical populations (E. autumnata and O. brumata from Northern Finland, E. autumnata and E. defoliaria from Southern Finland and all three species from Germany) in a climate chamber at a constant temperature to determine the relative importance of geographic origin in the timing of egg hatch measured in terms of cumulative temperature sums (degree days above 5 degrees C, DD5); i.e. the relative importance of local adaptation versus phenotypic plasticity in the timing of egg hatch. In all three species, eggs from northern populations required a significantly lower temperature sum for hatching than eggs from southern populations, but the differences between them in temperature sum requirements varied considerably among species, with the differences being largest for the earliest hatching and northernmost species, E. autumnata, and smallest for the southern, late-hatching E. defoliaria. In addition, the difference in hatch timing between the E. autumnata eggs from Southern Finland and Germany was many times greater than the difference between the two Finnish populations of E. autumnata, despite the fact that the geographical distances between these populations is similar. We discuss how these differences in hatching time may be explained by the differences in hatch-budburst synchrony and its importance for different moth species and populations. We also briefly reflect on the significance of photoperiod, which is not affected by climate change. It is a controller that works parallel or in addition to temperature sum both for egg hatch in moths and bud burst of their host plants

    Restriction Site Extension PCR: A Novel Method for High-Throughput Characterization of Tagged DNA Fragments and Genome Walking

    Get PDF
    BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR) to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI) restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR), touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon) sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well

    A genome for gnetophytes and early evolution of seed plants

    Get PDF
    Genome sequencing, assembly and annotation were conducted by the Novogene Bioinformatics Institute, Beijing, China; mutual contracts were No. NHT140016 and NVT140016004. This work was supported by funding from the Scientific Project of Shenzhen Urban Administration (201519) and a Major Technical Research Project of the Innovation of Science and Technology Commission of Shenzhen (JSGG20140515164852417). Additional funding was provided in particular by the Scientific Research Program of Sino-Africa Joint Research Center (SAJL201607). We thank X.Q. Wang, G.W. Hu, Z.D. Chen and Y.H. Guo for comments on gnetophyte phylogenetic relationships and ecological issues; H. Wu and X.P. Ning for discussion of related organ development; K.K. Wan and S. Sun for additional help on the analysis of repeats. We also thank X.Y. for support of funding coordination. Y.V.d.P. acknowledges the Multidisciplinary Research Partnership ‘Bioinformatics: from nucleotides to networks’ Project (no. 01MR0310W) of Ghent University, and funding from the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement 322739-DOUBLEUP

    Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal

    Full text link

    Molecular dissection of a contiguous gene syndrome: Localization of the genes involved in the Langer-Giedion syndrome

    No full text
    The Langer-Giedion syndrome (tricho-rhino-phalangeal syndrome type II, TRPS II) is characterized by craniofacial dysmorphism and skeletal abnormalities. It combines the clinical features of TRPS I and multiple cartilaginous exostoses (EXT). We have used YAC cloning, Southern blotting, PCR analysis, and fluorescence in situ hybridization to study chromosome 8 deletions, translocations, an inversion, and an insertion in patients with TRPS I, TRPS II or EXT. Our results indicate that the TRPS gene maps more than 1,000 kb proximal to the EXT1 gene and that both genes are affected in TRPS II. We conclude that TRPS II is not due to pleiotropic effects of mutations in a single gene, but that it is a true contiguous gene syndrome

    Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase

    No full text
    Development in higher plants depends on the activity of meristems, formative regions that continuously initiate new organs at their flanks. Meristems must maintain a balance between stem cell renewal and organ initiation. In fasciated mutants, organ initiation fails to keep pace with meristem proliferation. The thick tassel dwarf1 (td1) mutation of maize affects both male and female inflorescence development. The female inflorescence, which results in the ear, is fasciated, with extra rows of kernels. The male inflorescence, or tassel, shows an increase in spikelet density. Floral meristems are also affected in td1 mutants; for example, male florets have an increase in stamen number. These results suggest that td1 functions in the inflorescence to limit meristem size. In addition, td1 mutants are slightly shorter than normal siblings, indicating that td1 also plays a role in vegetative development. td1 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that is a putative ortholog of the Arabidopsis CLAVATA1 protein. These results complement previous work showing that fasciated ear2 encodes a CLAVATA2-like protein, and suggest that the CLAVATA signaling pathway is conserved in monocots. td1 maps in the vicinity of quantitative trait loci that affect seed row number, spikelet density and plant height. We discuss the possible selection pressures on td1 during maize domestication

    Die Gewebe der Gefäßpflanzen

    No full text
    corecore