627 research outputs found
Optical afterglow luminosities in the Swift epoch: confirming clustering and bimodality
We show that Gamma Ray Bursts (GRBs) of known redshift and rest frame optical
extinction detected by the Swift satellite fully confirm earlier results
concerning the distribution of the optical afterglow luminosity at 12 hours
after trigger (rest frame time). This distribution is bimodal and relatively
narrow, especially for the high luminosity branch. This is intriguing, given
that Swift GRBs have, on average, a redshift larger than pre-Swift ones, and is
unexpected in the common scenario explaining the GRB afterglow. We investigate
if the observed distribution can be the result of selection effects affecting a
unimodal parent luminosity distribution, and find that either the distribution
is intrinsically bimodal, or most (60 per cent) of the bursts are absorbed by a
substantial amount of grey dust. In both cases we suggest that most dark bursts
should belong to the underluminous optical family.Comment: 5 pages 3 figures, minor revision, added reference, accepted for
publication in MNRAS Letter
Kinetic theory for non-equilibrium stationary states in long-range interacting systems
We study long-range interacting systems perturbed by external stochastic
forces. Unlike the case of short-range systems, where stochastic forces usually
act locally on each particle, here we consider perturbations by external
stochastic fields. The system reaches stationary states where external forces
balance dissipation on average. These states do not respect detailed balance
and support non-vanishing fluxes of conserved quantities. We generalize the
kinetic theory of isolated long-range systems to describe the dynamics of this
non-equilibrium problem. The kinetic equation that we obtain applies to
plasmas, self-gravitating systems, and to a broad class of other systems. Our
theoretical results hold for homogeneous states, but may also be generalized to
apply to inhomogeneous states. We obtain an excellent agreement between our
theoretical predictions and numerical simulations. We discuss possible
applications to describe non-equilibrium phase transitions.Comment: 11 pages, 2 figures; v2: small changes, close to the published
versio
Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale
Nearly conformal dynamics at the TeV scale as motivated by the hierarchy
problem can be characterized by a stage of significant supercooling at the
electroweak epoch. This has important cosmological consequences. In particular,
a common assumption about the history of the universe is that the reheating
temperature is high, at least high enough to assume that TeV-mass particles
were once in thermal equilibrium. However, as we discuss in this paper, this
assumption is not well justified in some models of strong dynamics at the TeV
scale. We then need to reexamine how to achieve baryogenesis in these theories
as well as reconsider how the dark matter abundance is inherited. We argue that
baryonic and dark matter abundances can be explained naturally in these setups
where reheating takes place by bubble collisions at the end of the strongly
first-order phase transition characterizing conformal symmetry breaking, even
if the reheating temperature is below the electroweak scale GeV. We
also discuss inflation as well as gravity wave smoking gun signatures of this
class of models.Comment: 22 pages, 7 figure
Lack of consensus in social systems
We propose an exactly solvable model for the dynamics of voters in a
two-party system. The opinion formation process is modeled on a random network
of agents. The dynamical nature of interpersonal relations is also reflected in
the model, as the connections in the network evolve with the dynamics of the
voters. In the infinite time limit, an exact solution predicts the emergence of
consensus, for arbitrary initial conditions. However, before consensus is
reached, two different metastable states can persist for exponentially long
times. One state reflects a perfect balancing of opinions, the other reflects a
completely static situation. An estimate of the associated lifetimes suggests
that lack of consensus is typical for large systems.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let
Insights from in\ua0vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings
The seedling stage is the most susceptible one during a tree\u2032s life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited.
Micro\u2010CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (\u3a8) allowed the simultaneous observation of gas\u2010filled versus water\u2010filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques.
In A. pseudoplatanus, petioles showed a higher \u3a8 at 50% PLC (\u3a850 121.13MPa) than stems ( 122.51 MPa) and roots ( 121.78 MPa). The main leaf veins of F. sylvatica had similar \u3a850 values ( 122.26 MPa) to stems ( 122.74 MPa) and roots ( 122.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro\u2010CT based PLC calculations.
Micro\u2010CT analyses indicated a species\u2010specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade\u2010tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits
QoS management and control for an all-IP WiMAX network architecture: Design, implementation and evaluation
The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS) requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks). One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator
Coevolution of Glauber-like Ising dynamics on typical networks
We consider coevolution of site status and link structures from two different
initial networks: a one dimensional Ising chain and a scale free network. The
dynamics is governed by a preassigned stability parameter , and a rewiring
factor , that determines whether the Ising spin at the chosen site flips
or whether the node gets rewired to another node in the system. This dynamics
has also been studied with Ising spins distributed randomly among nodes which
lie on a network with preferential attachment. We have observed the steady
state average stability and magnetisation for both kinds of systems to have an
idea about the effect of initial network topology. Although the average
stability shows almost similar behaviour, the magnetisation depends on the
initial condition we start from. Apart from the local dynamics, the global
effect on the dynamics has also been studied. These parameters show interesting
variations for different values of and , which helps in determining
the steady-state condition for a given substrate.Comment: 8 pages, 10 figure
Microlenses fabricated by two-photon laser polymerization for cell imaging with non-linear excitation microscopy
Non-linear excitation microscopy offers several advantages for in-vivo
imaging compared to conventional confocal techniques. However, tissue
penetration can still be an issue due to scattering and spherical aberrations
induced on focused beams by the tissue. The use of low numerical aperture objectives to pass through the outer layers of the skin, together with
high dioptric power microlenses implanted in-vivo close to the observation
volume, can be beneficial to the reduction of optical aberrations. Here, Fibroblast cell culture plano-convex microlenses to be used for non-linear imaging
of biological tissue are developed and tested. The microlenses can be used
as single lenses or multiplexed in an array. A thorough test of the lenses
wavefront is reported together with the modulation transfer function and
wavefront profile. Magnified fluorescence images can be retrieved through
the microlenses coupled to commercial confocal and two-photon excitation
scanning microscopes. The signal-to-noise ratio of the images is not substantially affected by the use of the microlenses and the magnification can
be adjusted by changing the relative position of the microlens array to the
microscope objective and the immersion medium. These results are opening
the way to the application of implanted micro-optics for optical in-vivo inspection of biological processes
- …