512 research outputs found

    Influence of Mo6+ on Dielectric properties of Copper Ferrites

    Get PDF
    Two series of copper ferrites are prepared using the chemical compositional formula Cu1.0-3y Fe2.0-2x Mox + yO4.0. They are calcinated at 750 C and sintered at 950C.When x =y = 0.0, the ε′ of the basic copper ferrite is probably due to electronic exchange interactions of copper and iron ions as Cu2+↔ Cu1+ and Fe3+↔ Fe2+. The observed value of dielectric constant (є′) decreases as a function of substituent concentration (x) up to x = 0.20 and for further values of ‘x’ it found to increase. In the case of ‘C’ (x = 0) series ferrites є′ decreases with substituent concentration (y) up to y = 0.04, later it found to increase. The dispersion of ac resistivity with frequency is observed indicating their strong dependence on frequency as in the case of dielectric behaviour. These results are explained with different possible mechanisms

    Spectroscopic characterization and quantum chemical investigation of molecular structure and vibrational spectra of phthalazine-1(2H)-one

    Get PDF
    In this study, vibrational and electronic transition analysis of phthalazine-1(2H)-one have been presented using experimental techniques FT-IR, FT-Raman and density functional theory (DFT) calculation. The structural properties of the molecule in the ground state have been calculated using DFT employing B3LYP/6-311++G(d,p) basis set. Optimized geometrical parameters have been interpreted and compared with the experimental values. The complete assignments have been performed on the basis of the experimental data and potential energy distribution (PED) of the vibrational modes. The calculated HOMO and LUMO energies and energy difference (ΔEHOMO‒LUMO = − 4.876 eV), confirm that charge transfers occur within the molecule. The stability of the molecule arising from hyperconjugative interactions and the charge delocalization has been analyzed using natural bond orbital’s analysis (NBO). The specific heat, Gibb’s free energy, and entropy of molecule have been calculated as a function of temperature by using statistical mechanics coupled with quantum chemical calculation. Observed vibrational wave numbers have been compared with calculated values, and found to be in agreement with experimental results. The study of dielectric properties like dielectric constant at microwave frequency, static dielectric constant and dielectric constant at optical frequency of Phthalazine-1(2H)-one have been determined. The dielectric relaxation studies provide information about the molecular structure and intermolecular interaction between phthalazine-1(2H)-one and alcohol mixture

    A Comparison of Pre-Trained Models for Pneumonia Disease Prediction Using Chest Images

    Get PDF
    Aim: As viral diseases like Corona spread from one person to another, it has great impact on the public health system and socio-economic activities all over the world. Material and method: The only way to solve the spreading of this disease is early diagnosis of this disease. Statistics and Result: Deep learning algorithms were utilized in this study for comparative analysis of pre-trained models such as VGG16, MobileNetV2 for the detection of pneumonia using different hyper parameters such as batch-size, learning rate, epochs and so on. The proposed models that are MobileNetV2 and VGG16 attains better performance

    Influence of lattice distortion on the Curie temperature and spin-phonon coupling in LaMn0.5_{0.5}Co0.5_{0.5}O3_{3}

    Full text link
    Two distinct ferromagnetic phases of LaMn0.5_{0.5}Co0.5_{0.5}O3_{3} having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature Tc\textit{T}_{c} is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn - O - Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in Tc\textit{T}_{c}. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the Tc\textit{T}_{c}. Electrical transport properties of both the phases have been investigated based on the lattice distortion.Comment: 9 figure

    Variability in soil properties influencing pigeonpea (Cajanus cajana L.) yield: a multivariate statistical analysis [version 3; peer review: 2 approved]

    Get PDF
    Aims: The aim of the study was to reveal the variability in soil properties influencing pigeonpea (Cajanus cajana L.) seed yield under semi-arid rainfed condition. Methods: Soils were initially classified into series level and further these series were divided into soil-phase units. For two site years viz., 2018-19 and 2019-20, surface soil samples from each soil-phase unit were collected before sowing of pigeonpea and subsequently crop growth parameters at critical stages were recorded. Results: The principal component analysis with varimax rotation resulted in seven components for both the site years, having eigenvalues greater than one, explained more than 80% of the variability. The step wise linear regression analysis showed that the pigeonpea seed yield was linearly correlated with PC3 (p<0.01), PC4 (p<0.01) and PC7 (p<0.05) of soil properties with R2 = 0.679, during 2018-19. Whereas, during 2019-20, the seed yield was linearly correlated with PC1 (p<0.01), PC3 (p<0.01) and PC6 (p<0.05) with R2 = 0.677. In site year 1, the available P2O5, Fe, Zn, S, Cu, number of pods, surface soil moisture determined the yield. In site year 2, the available K2O, P2O5, Fe, Zn, S, clay, CEC and available water content determined the yield. All these variables together explain variability in yield

    Understanding Helicoverpa armigera pest population dynamics related to chickpea crop using neural networks

    Get PDF
    Insect pests are a major cause of crop loss globally. Pest management will be effective and efficient if we can predict the occurrence of peak activities of a given pest. Research efforts are going on to understand the pest dynamics by applying analytical and other techniques on pest surveillance data sets. We make an effort to understand pest population dynamics using neural networks by analyzing pest surveillance data set of Helicoverpa armigera or Pod borer on chickpea (Cicer arietinum L.) crop. The results show that neural network method successfully predicts the pest attack incidences for one week in advance

    Dyck Paths, Motzkin Paths and Traffic Jams

    Get PDF
    It has recently been observed that the normalization of a one-dimensional out-of-equilibrium model, the Asymmetric Exclusion Process (ASEP) with random sequential dynamics, is exactly equivalent to the partition function of a two-dimensional lattice path model of one-transit walks, or equivalently Dyck paths. This explains the applicability of the Lee-Yang theory of partition function zeros to the ASEP normalization. In this paper we consider the exact solution of the parallel-update ASEP, a special case of the Nagel-Schreckenberg model for traffic flow, in which the ASEP phase transitions can be intepreted as jamming transitions, and find that Lee-Yang theory still applies. We show that the parallel-update ASEP normalization can be expressed as one of several equivalent two-dimensional lattice path problems involving weighted Dyck or Motzkin paths. We introduce the notion of thermodynamic equivalence for such paths and show that the robustness of the general form of the ASEP phase diagram under various update dynamics is a consequence of this thermodynamic equivalence.Comment: Version accepted for publicatio

    “<i>I do it because they do it</i>”:social-neutralisation in information security practices of Saudi medical interns

    Get PDF
    Successful implementation of information security policies (ISP) and IT controls play an important role in safeguarding patient privacy in healthcare organizations. Our study investigates the factors that lead to healthcare practitioners' neutralisation of ISPs, leading to non-compliance. The study adopted a qualitative approach and conducted a series of semi-structured interviews with medical interns and hospital IT department managers and staff in an academic hospital in Saudi Arabia. The study's findings revealed that the MIs imitate their peers' actions and employ similar justifications when violating ISP dictates. Moreover, MI team superiors' (seniors) ISP non-compliance influence MIs tendency to invoke neutralisation techniques. We found that the trust between the medical team members is an essential social facilitator that motivates MIs to invoke neutralisation techniques to justify violating ISP policies and controls. These findings add new insights that help us to understand the relationship between the social context and neutralisation theory in triggering ISP non-compliance

    Structural Phase Transition at High Temperatures in Solid Molecular Hydrogen and Deuterium

    Full text link
    We study the effect of temperature up to 1000K on the structure of dense molecular para-hydrogen and ortho-deuterium, using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.Comment: 8 pages, 7 figures; accepted in Phys. Rev.
    corecore